Suppr超能文献

具有协变量的高维高斯图形回归模型

High-Dimensional Gaussian Graphical Regression Models with Covariates.

作者信息

Zhang Jingfei, Li Yi

机构信息

Department of Management Science, University of Miami, Coral Gables, FL 33146.

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109.

出版信息

J Am Stat Assoc. 2023;118(543):2088-2100. doi: 10.1080/01621459.2022.2034632. Epub 2022 Mar 14.

Abstract

Though Gaussian graphical models have been widely used in many scientific fields, relatively limited progress has been made to link graph structures to external covariates. We propose a Gaussian graphical regression model, which regresses both the mean and the precision matrix of a Gaussian graphical model on covariates. In the context of co-expression quantitative trait locus (QTL) studies, our method can determine how genetic variants and clinical conditions modulate the subject-level network structures, and recover both the population-level and subject-level gene networks. Our framework encourages sparsity of covariate effects on both the mean and the precision matrix. In particular for the precision matrix, we stipulate simultaneous sparsity, i.e., group sparsity and element-wise sparsity, on effective covariates and their effects on network edges, respectively. We establish variable selection consistency first under the case with known mean parameters and then a more challenging case with unknown means depending on external covariates, and establish in both cases the convergence rates and the selection consistency of the estimated precision parameters. The utility and efficacy of our proposed method is demonstrated through simulation studies and an application to a co-expression QTL study with brain cancer patients.

摘要

尽管高斯图形模型已在许多科学领域中广泛使用,但在将图形结构与外部协变量联系起来方面取得的进展相对有限。我们提出了一种高斯图形回归模型,该模型基于协变量对高斯图形模型的均值和精度矩阵进行回归。在共表达数量性状基因座(QTL)研究的背景下,我们的方法可以确定遗传变异和临床状况如何调节个体水平的网络结构,并恢复群体水平和个体水平的基因网络。我们的框架鼓励协变量对均值和精度矩阵的影响具有稀疏性。特别是对于精度矩阵,我们分别规定了有效协变量及其对网络边的影响在同时稀疏性,即组稀疏性和逐元素稀疏性。我们首先在均值参数已知的情况下建立变量选择一致性,然后在更具挑战性的均值未知且依赖于外部协变量的情况下建立变量选择一致性,并在这两种情况下建立估计精度参数的收敛速度和选择一致性。通过模拟研究以及在脑癌患者共表达QTL研究中的应用,证明了我们提出的方法的实用性和有效性。

相似文献

1
High-Dimensional Gaussian Graphical Regression Models with Covariates.
J Am Stat Assoc. 2023;118(543):2088-2100. doi: 10.1080/01621459.2022.2034632. Epub 2022 Mar 14.
2
Sparse Estimation of Conditional Graphical Models With Application to Gene Networks.
J Am Stat Assoc. 2012 Jan 1;107(497):152-167. doi: 10.1080/01621459.2011.644498.
3
Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models.
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2606-20. doi: 10.1109/TNNLS.2014.2384201. Epub 2015 Mar 4.
5
Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics.
Biometrika. 2013 Mar;100(1):139-156. doi: 10.1093/biomet/ass058. Epub 2012 Nov 30.
6
Bayesian Graphical Regression.
J Am Stat Assoc. 2019;114(525):184-197. doi: 10.1080/01621459.2017.1389739. Epub 2018 Jun 28.
7
Adjusting for High-dimensional Covariates in Sparse Precision Matrix Estimation by ℓ-Penalization.
J Multivar Anal. 2013 Apr 1;116:365-381. doi: 10.1016/j.jmva.2013.01.005.
8
The cluster graphical lasso for improved estimation of Gaussian graphical models.
Comput Stat Data Anal. 2015 May;85:23-36. doi: 10.1016/j.csda.2014.11.015.
9
Asymptotically Normal and Efficient Estimation of Covariate-Adjusted Gaussian Graphical Model.
J Am Stat Assoc. 2016 Mar;111(513):394-406. doi: 10.1080/01621459.2015.1010039. Epub 2016 May 5.
10
Regularized estimation of large-scale gene association networks using graphical Gaussian models.
BMC Bioinformatics. 2009 Nov 24;10:384. doi: 10.1186/1471-2105-10-384.

引用本文的文献

1
Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates.
J Comput Graph Stat. 2024 Dec 20. doi: 10.1080/10618600.2024.2421246.
2
Covariance-on-covariance regression.
Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf097.
3
Statistical Inference of Cell-type Proportions Estimated from Bulk Expression Data.
J Am Stat Assoc. 2024;119(548):2521-2532. doi: 10.1080/01621459.2024.2382435. Epub 2024 Sep 20.
4
A probabilistic modeling framework for genomic networks incorporating sample heterogeneity.
Cell Rep Methods. 2025 Feb 24;5(2):100984. doi: 10.1016/j.crmeth.2025.100984. Epub 2025 Feb 14.
5
A Selective Review of Network Analysis Methods for Gene Expression Data.
Methods Mol Biol. 2025;2880:293-307. doi: 10.1007/978-1-0716-4276-4_14.
7
Co-expression-wide association studies link genetically regulated interactions with complex traits.
medRxiv. 2024 Dec 13:2024.10.02.24314813. doi: 10.1101/2024.10.02.24314813.
8
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae023.
9
A modeling framework for detecting and leveraging node-level information in Bayesian network inference.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验