Suppr超能文献

具有可变结构的贝叶斯协变量相关高斯图形模型

Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure.

作者信息

Ni Yang, Stingo Francesco C, Baladandayuthapani Veerabhadran

机构信息

Department of Statistics, Texas A&M University, College Station, TX 77843, USA.

Department of Statistics, Computer Science, Applications "G. Parenti", The University of Florence Florence, Italy.

出版信息

J Mach Learn Res. 2022;23(242).

Abstract

We introduce Bayesian Gaussian graphical models with covariates (GGMx), a class of multivariate Gaussian distributions with covariate-dependent sparse precision matrix. We propose a general construction of a functional mapping from the covariate space to the cone of sparse positive definite matrices, which encompasses many existing graphical models for heterogeneous settings. Our methodology is based on a novel mixture prior for precision matrices with a non-local component that admits attractive theoretical and empirical properties. The flexible formulation of GGMx allows both the strength and the sparsity pattern of the precision matrix (hence the graph structure) change with the covariates. Posterior inference is carried out with a carefully designed Markov chain Monte Carlo algorithm, which ensures the positive definiteness of sparse precision matrices at any given covariates' values. Extensive simulations and a case study in cancer genomics demonstrate the utility of the proposed model.

摘要

我们引入了带协变量的贝叶斯高斯图形模型(GGMx),这是一类具有依赖协变量的稀疏精度矩阵的多元高斯分布。我们提出了一种从协变量空间到稀疏正定矩阵锥的泛函映射的一般构造方法,该方法涵盖了许多现有的用于异质环境的图形模型。我们的方法基于一种用于精度矩阵的新型混合先验,该先验具有一个非局部分量,具有吸引人的理论和实证特性。GGMx的灵活公式允许精度矩阵的强度和稀疏模式(从而图形结构)随协变量而变化。使用精心设计的马尔可夫链蒙特卡罗算法进行后验推断,该算法可确保在任何给定协变量值下稀疏精度矩阵的正定性质。广泛的模拟和癌症基因组学的案例研究证明了所提出模型的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b477/10552903/3a6b5a103f88/nihms-1857185-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验