Cai Hongmin, Huang Weitian, Yang Sirui, Ding Siqi, Zhang Yue, Hu Bin, Zhang Fa, Cheung Yiu-Ming
IEEE Trans Pattern Anal Mach Intell. 2024 May;46(5):3637-3652. doi: 10.1109/TPAMI.2023.3346869. Epub 2024 Apr 3.
In multi-view environment, it would yield missing observations due to the limitation of the observation process. The most current representation learning methods struggle to explore complete information by lacking either cross-generative via simply filling in missing view data, or solidative via inferring a consistent representation among the existing views. To address this problem, we propose a deep generative model to learn a complete generative latent representation, namely Complete Multi-view Variational Auto-Encoders (CMVAE), which models the generation of the multiple views from a complete latent variable represented by a mixture of Gaussian distributions. Thus, the missing view can be fully characterized by the latent variables and is resolved by estimating its posterior distribution. Accordingly, a novel variational lower bound is introduced to integrate view-invariant information into posterior inference to enhance the solidative of the learned latent representation. The intrinsic correlations between views are mined to seek cross-view generality, and information leading to missing views is fused by view weights to reach solidity. Benchmark experimental results in clustering, classification, and cross-view image generation tasks demonstrate the superiority of CMVAE, while time complexity and parameter sensitivity analyses illustrate the efficiency and robustness. Additionally, application to bioinformatics data exemplifies its practical significance.
在多视图环境中,由于观测过程的限制会产生缺失观测值。当前大多数表示学习方法难以通过简单地填充缺失视图数据进行交叉生成,或通过推断现有视图之间的一致表示进行整合,从而探索完整信息。为了解决这个问题,我们提出了一种深度生成模型来学习完整的生成性潜在表示,即完整多视图变分自编码器(CMVAE),它从由高斯分布混合表示的完整潜在变量对多个视图的生成进行建模。因此,缺失视图可以由潜在变量完全表征,并通过估计其后验分布来解决。相应地,引入了一种新颖的变分下界,将视图不变信息整合到后验推断中,以增强学习到的潜在表示的整合性。挖掘视图之间的内在相关性以寻求跨视图通用性,并通过视图权重融合导致缺失视图的信息以实现整合性。在聚类、分类和跨视图图像生成任务中的基准实验结果证明了CMVAE的优越性,而时间复杂度和参数敏感性分析说明了其效率和鲁棒性。此外,应用于生物信息学数据例证了其实际意义。