School of Mechanical Engineering, Yonsei University, Seoul, South Korea.
Department of Artificial Intelligence Convergence, Ewha Womans University, Seoul, South Korea.
J Dent. 2024 Feb;141:104821. doi: 10.1016/j.jdent.2023.104821. Epub 2023 Dec 24.
In this study, we aimed to integrate tooth number recognition and caries detection in full intraoral photographic images using a cascade region-based deep convolutional neural network (R-CNN) model to facilitate the practical application of artificial intelligence (AI)-driven automatic caries detection in clinical practice.
Our dataset comprised 24,578 images, encompassing 4787 upper occlusal, 4347 lower occlusal, 5230 right lateral, 5010 left lateral, and 5204 frontal views. In each intraoral image, tooth numbers and, when present, dental caries, including their location and stage, were annotated using bounding boxes. A cascade R-CNN model was used for dental caries detection and tooth number recognition within intraoral images.
For tooth number recognition, the model achieved an average mean average precision (mAP) score of 0.880. In the task of dental caries detection, the model's average mAP score was 0.769, with individual scores spanning from 0.695 to 0.893.
The primary objective of integrating tooth number recognition and caries detection within full intraoral photographic images has been achieved by our deep learning model. The model's training on comprehensive intraoral datasets has demonstrated its potential for seamless clinical application.
This research holds clinical significance by achieving AI-driven automatic integration of tooth number recognition and caries detection in full intraoral images where multiple teeth are visible. It has the potential to promote the practical application of AI in real-life and clinical settings.
本研究旨在利用级联区域卷积神经网络(R-CNN)模型将牙齿数量识别和龋病检测整合到全口口腔摄影图像中,以促进人工智能(AI)驱动的自动龋病检测在临床实践中的实际应用。
我们的数据集包含 24578 张图像,涵盖 4787 张上颌咬合面、4347 张下颌咬合面、5230 张右侧侧位、5010 张左侧侧位和 5204 张正面视图。在每张口腔内图像中,使用边界框对牙齿数量以及存在的龋齿进行标注,包括其位置和阶段。使用级联 R-CNN 模型对口腔内图像中的龋齿检测和牙齿数量识别进行检测。
在牙齿数量识别方面,该模型的平均平均精度(mAP)得分为 0.880。在龋齿检测任务中,该模型的平均 mAP 得分为 0.769,个别分数范围为 0.695 至 0.893。
通过我们的深度学习模型,已经实现了在全口口腔摄影图像中整合牙齿数量识别和龋病检测的主要目标。该模型在全面的口腔内数据集上的训练表明了其在无缝临床应用中的潜力。
本研究通过实现 AI 驱动的全口图像中多颗牙齿可见的牙齿数量识别和龋病检测的自动整合,具有临床意义。它有可能促进人工智能在现实生活和临床环境中的实际应用。