Suppr超能文献

基于两阶段深度学习的脑微出血磁共振图像自动检测方法

Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach.

机构信息

Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.

Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.

出版信息

Neuroimage Clin. 2020;28:102464. doi: 10.1016/j.nicl.2020.102464. Epub 2020 Oct 13.

Abstract

Cerebral Microbleeds (CMBs) are small chronic brain hemorrhages, which have been considered as diagnostic indicators for different cerebrovascular diseases including stroke, dysfunction, dementia, and cognitive impairment. However, automated detection and identification of CMBs in Magnetic Resonance (MR) images is a very challenging task due to their wide distribution throughout the brain, small sizes, and the high degree of visual similarity between CMBs and CMB mimics such as calcifications, irons, and veins. In this paper, we propose a fully automated two-stage integrated deep learning approach for efficient CMBs detection, which combines a regional-based You Only Look Once (YOLO) stage for potential CMBs candidate detection and three-dimensional convolutional neural networks (3D-CNN) stage for false positives reduction. Both stages are conducted using the 3D contextual information of microbleeds from the MR susceptibility-weighted imaging (SWI) and phase images. However, we average the adjacent slices of SWI and complement the phase images independently and utilize them as a two-channel input for the regional-based YOLO method. This enables YOLO to learn more reliable and representative hierarchal features and hence achieve better detection performance. The proposed work was independently trained and evaluated using high and low in-plane resolution data, which contained 72 subjects with 188 CMBs and 107 subjects with 572 CMBs, respectively. The results in the first stage show that the proposed regional-based YOLO efficiently detected the CMBs with an overall sensitivity of 93.62% and 78.85% and an average number of false positives per subject (FP) of 52.18 and 155.50 throughout the five-folds cross-validation for both the high and low in-plane resolution data, respectively. These findings outperformed results by previously utilized techniques such as 3D fast radial symmetry transform, producing fewer FP and lower computational cost. The 3D-CNN based second stage further improved the detection performance by reducing the FP to 1.42 and 1.89 for the high and low in-plane resolution data, respectively. The outcomes of this work might provide useful guidelines towards applying deep learning algorithms for automatic CMBs detection.

摘要

脑微出血(CMB)是一种慢性脑内小出血,被认为是包括中风、功能障碍、痴呆和认知障碍在内的多种脑血管疾病的诊断指标。然而,由于 CMB 广泛分布于整个大脑,体积较小,并且与钙化、铁和静脉等 CMB 模拟物在视觉上高度相似,因此在磁共振(MR)图像中自动检测和识别 CMB 是一项极具挑战性的任务。在本文中,我们提出了一种完全自动化的两级集成深度学习方法,用于高效的 CMB 检测,该方法结合了基于区域的 You Only Look Once (YOLO) 阶段,用于潜在 CMB 候选物的检测,以及三维卷积神经网络(3D-CNN)阶段,用于减少假阳性。这两个阶段都使用了来自 MR 磁敏感加权成像(SWI)和相位图像的微出血的 3D 上下文信息。然而,我们平均了 SWI 的相邻切片,并独立补充了相位图像,并将它们用作基于区域的 YOLO 方法的双通道输入。这使 YOLO 能够学习更可靠和代表性的层次特征,从而实现更好的检测性能。所提出的工作是使用高和低平面分辨率数据进行独立训练和评估的,这些数据分别包含 72 名受试者的 188 个 CMB 和 107 名受试者的 572 个 CMB。第一阶段的结果表明,所提出的基于区域的 YOLO 有效地检测到 CMB,在高和低平面分辨率数据的五次交叉验证中,整体灵敏度分别为 93.62%和 78.85%,平均每个受试者的假阳性数(FP)分别为 52.18 和 155.50。这些发现优于先前使用的技术(如 3D 快速径向对称变换)的结果,产生的 FP 更少,计算成本更低。基于 3D-CNN 的第二阶段通过将 FP 降低到高和低平面分辨率数据的 1.42 和 1.89,进一步提高了检测性能。这项工作的结果可能为应用深度学习算法进行自动 CMB 检测提供有用的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c2b/7575881/b63ea36943e5/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验