Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States.
Elife. 2023 Dec 27;12:RP90456. doi: 10.7554/eLife.90456.
The processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of BCs along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity (DS) when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning. We report that despite significant dendritic crosstalk and dissimilar directional preferences along the dendrites that occur during whole-cell stimulation, the rules that guide BC kinetics leading to optimal DS are similar to the single-dendrite condition. To correlate model predictions to empirical findings, we utilized two-photon glutamate imaging to study the dynamics of bipolar release onto ON- and OFF-starburst dendrites in the murine retina. We reveal diverse presynaptic dynamics in response to motion in both BC populations; algorithms trained on the experimental data suggested that the differences in the temporal release kinetics are likely to correspond to heterogeneous receptive field properties among the different BC types, including the spatial extent of the center and surround components. In addition, we demonstrate that circuit architecture composed of presynaptic units with experimentally recorded dynamics could enhance directional drive but not to levels that replicate empirical findings, suggesting other DS mechanisms are required to explain SAC function. Our study provides new insights into the complex mechanisms underlying DS in retinal processing and highlights the potential contribution of presynaptic kinetics to the computation of visual information by SACs.
视网膜爆发型星形胶质细胞(SAC)对视觉信息的处理涉及将双极细胞(BC)的兴奋性输入转化为定向钙输出。虽然先前的研究表明,在后突触细胞的体-树突轴上 BC 的动力学特性的不对称性可以增强个体分支水平的定向调谐,但在视觉刺激涉及整个树突树时,生物相关的突触前动力学是否有助于方向选择性(DS)尚不清楚。为了解决这个问题,我们构建了双极-SAC 电路的多腔室模型,并对其进行了训练,以增强方向调谐。我们报告说,尽管在全细胞刺激期间整个树突上会发生明显的树突串扰和沿树突的不同方向偏好,但引导 BC 动力学以达到最佳 DS 的规则与单树突条件相似。为了将模型预测与经验发现相关联,我们利用双光子谷氨酸成像来研究在小鼠视网膜中 ON 和 OFF 爆发树突上双极释放的动力学。我们揭示了两种 BC 群体对运动的不同突触前动力学;针对实验数据进行训练的算法表明,在时间释放动力学上的差异可能对应于不同 BC 类型之间的异质性感受野特性,包括中心和环绕成分的空间范围。此外,我们证明了由具有实验记录动力学的突触前单元组成的电路结构可以增强方向驱动,但不能达到复制经验发现的水平,这表明需要其他 DS 机制来解释 SAC 功能。我们的研究为视网膜处理中 DS 的复杂机制提供了新的见解,并强调了突触前动力学对 SAC 对视觉信息计算的潜在贡献。