Suppr超能文献

MCAFNet:用于蜂窝状肺病变分割的多尺度跨层注意力融合网络

MCAFNet: multiscale cross-layer attention fusion network for honeycomb lung lesion segmentation.

作者信息

Li Gang, Xie Jinjie, Zhang Ling, Sun Mengxia, Li Zhichao, Sun Yuanjin

机构信息

Taiyuan University of Technology Software College, Taiyuan, China.

出版信息

Med Biol Eng Comput. 2024 Apr;62(4):1121-1137. doi: 10.1007/s11517-023-02995-9. Epub 2023 Dec 27.

Abstract

Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model's ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet .

摘要

从肺部CT图像中准确分割蜂窝状肺病变在各种肺部疾病的诊断和治疗中起着至关重要的作用。然而,用于自动分割蜂窝状肺病变的算法仍然有限。在本研究中,我们提出了一种新颖的多尺度跨层注意力融合网络(MCAFNet),专门用于分割蜂窝状肺病变,同时考虑到它们的形状特异性以及与周围血管阴影的相似性。MCAFNet包含几个关键模块以提高分割性能。首先,在输入部分引入了一个多尺度聚合(MIA)模块,以在降采样过程中保留空间信息。其次,提出了一个跨层注意力融合(CAF)模块,通过整合来自特征图不同层的通道信息和空间信息来捕获多尺度特征。最后,在跳跃连接内构建了一个双向注意力门(BAG)模块,以增强模型过滤背景信息并专注于分割目标的能力。实验结果证明了所提出的MCAFNet的有效性。在蜂窝状肺分割数据集上,该网络实现了0.895的交并比(IoU)、0.921的平均IoU(mIoU)和0.949的平均骰子系数(mDice),优于现有的医学图像分割算法。此外,在其他数据集上进行的实验证实了所提出模型的通用性和鲁棒性。本研究的贡献在于开发了MCAFNet,它解决了蜂窝状肺病变缺乏自动分割算法的问题。所提出的网络在准确分割蜂窝状肺病变方面表现出卓越的性能,从而促进了肺部疾病的诊断和治疗。这项工作通过提出一种有效结合多尺度特征和注意力机制进行肺病变分割的新方法,为现有文献做出了贡献。代码可在https://github.com/Oran9er/MCAFNet获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验