Suppr超能文献

使用静息态功能磁共振成像数据和图卷积网络对自闭症谱系障碍进行分类

Classification of Autism Spectrum Disorder Using rs-fMRI data and Graph Convolutional Networks.

作者信息

Yang Tianren, Al-Duailij Mai A, Bozdag Serdar, Saeed Fahad

机构信息

Knight Foundation School of Computing and Information Sciences, Florida International University (FIU), Miami, Florida.

Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia.

出版信息

Proc IEEE Int Conf Big Data. 2022 Dec;2022:3131-3138. doi: 10.1109/bigdata55660.2022.10021070. Epub 2023 Jan 26.

Abstract

Autism spectrum disorder (ASD) affects large number of children and adults in the US, and worldwide. Early and quick diagnosis of ASD can improve the quality of life significantly both for patients and their families. Prior research provides strong evidence that structural and functional magnetic resonance imaging (MRI) data collected from individuals with ASD exhibit distinguishing characteristics that differ in local and global, spatial and temporal neural patterns of the brain - and therefore can be used for diagnostic purposes for various mental disorders. However, the data from MRI are high-dimensional and advanced methods are needed to make sense out of these datasets. In this paper, we present a novel model based on graph convolutional network (GCN) that can utilize resting state fMRI (rs-fMRI) data to classify ASD subjects from health controls (HC). In addition to using the graph from traditional correlation matrices, our proposed GCN model incorporates graphlet topological counting as one of the training features. Our results show that graphlets can preserve the topological information of the graphs obtained from fMRI data. Combined with our GCN, the graphlets retain enough topological information to differentiate between the ASD and HC. Our proposed model gives an average accuracy of 64.27% on the whole ABIDE-I data sets (1035 subjects) and highest site-specific accuracy of 75.9%, which is comparable to other state-of-the-art methods - while potentially open to being more interpretable.

摘要

自闭症谱系障碍(ASD)在美国乃至全球影响着大量儿童和成年人。ASD的早期快速诊断能够显著提高患者及其家庭的生活质量。先前的研究提供了强有力的证据,表明从患有ASD的个体收集的结构和功能磁共振成像(MRI)数据呈现出在大脑的局部和全局、空间和时间神经模式方面存在差异的显著特征——因此可用于各种精神障碍的诊断。然而,MRI数据是高维的,需要先进的方法来理解这些数据集。在本文中,我们提出了一种基于图卷积网络(GCN)的新型模型,该模型可以利用静息态功能磁共振成像(rs-fMRI)数据将ASD受试者与健康对照(HC)进行分类。除了使用传统相关矩阵中的图之外,我们提出的GCN模型还将图元拓扑计数纳入作为训练特征之一。我们的结果表明,图元可以保留从fMRI数据获得的图的拓扑信息。与我们的GCN相结合,图元保留了足够的拓扑信息以区分ASD和HC。我们提出的模型在整个ABIDE-I数据集(1035名受试者)上的平均准确率为64.27%,最高的特定部位准确率为75.9%,这与其他现有最先进方法相当——同时可能更易于解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82e/11215804/e301ffc9be65/nihms-2004359-f0001.jpg

相似文献

本文引用的文献

9
Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis.用于功能磁共振成像生物标志物分析的池化正则化图神经网络
Med Image Comput Comput Assist Interv. 2020 Oct;12267:625-635. doi: 10.1007/978-3-030-59728-3_61. Epub 2020 Sep 29.
10
Graph Neural Network for Interpreting Task-fMRI Biomarkers.用于解释任务功能磁共振成像生物标志物的图神经网络
Med Image Comput Comput Assist Interv. 2019 Oct;11768:485-493. doi: 10.1007/978-3-030-32254-0_54. Epub 2019 Oct 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验