Suppr超能文献

基于改进的 YOLOX-s 网络的野生动物目标检测。

Wildlife target detection based on improved YOLOX-s network.

机构信息

School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.

School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.

出版信息

Sci Rep. 2024 Oct 9;14(1):23608. doi: 10.1038/s41598-024-73631-1.

Abstract

To addresse the problem of poor detection accuracy or even false detection of wildlife caused by rainy environment at night. In this paper, a wildlife target detection algorithm based on improved YOLOX-s network is proposed. Our algorithm comprises the MobileViT-Pooling module, the Dynamic Head module, and the Focal-IoU module.First, the MobileViT-Pooling module is introduced.It is based on the MobileViT attention mechanism, which uses a spatial pooling operator with no parameters as a token mixer module to reduce the number of network parameters. This module performs feature extraction on three feature layers of the backbone network output respectively, senses the global information and strengthens the weight of the effective information. Second, the Dynamic Head module is used on the downstream task of network detection, which fuses the information of scale sensing, spatial sensing, and task sensing and improves the representation ability of the target detection head. Lastly, the Focal idea is utilized to improve the IoU loss function, which balances the learning of high and low quality IoU for the network. Experimental results reveal that our algorithm achieves a notable performance boost with mAP@0.5 reaching 87.8% (an improvement of 7.9%) and mAP@0.5:0.95 reaching 62.0% (an improvement of 5.3%). This advancement significantly augments the night-time wildlife detection accuracy under rainy conditions, concurrently diminishing false detections in such challenging environments.

摘要

为了解决夜间雨天环境导致野生动物检测精度差甚至误检的问题。本文提出了一种基于改进的 YOLOX-s 网络的野生动物目标检测算法。我们的算法包括 MobileViT-Pooling 模块、Dynamic Head 模块和 Focal-IoU 模块。首先,引入 MobileViT-Pooling 模块。它基于 MobileViT 注意力机制,使用无参数的空间池化算子作为令牌混合器模块,减少网络参数数量。该模块分别对骨干网络输出的三个特征层进行特征提取,感知全局信息并增强有效信息的权重。其次,在网络检测的下游任务中使用 Dynamic Head 模块,融合尺度感知、空间感知和任务感知的信息,提高目标检测头的表示能力。最后,利用 Focal 思想改进 IoU 损失函数,平衡网络对高质量和低质量 IoU 的学习。实验结果表明,我们的算法在 mAP@0.5 达到 87.8%(提高了 7.9%)和 mAP@0.5:0.95 达到 62.0%(提高了 5.3%)方面取得了显著的性能提升。这一进步显著提高了夜间雨天环境下的野生动物检测精度,同时减少了此类挑战性环境下的误检。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e01/11464500/40727961440d/41598_2024_73631_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验