Chen Jingshu, Zou Mingyu, Zhang Nan, Qi Shouliang, Yang Benqiang, Zhang Libo, Shi Lin, Duan Yang
Department of Radiology, Center for Neuroimaging, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China.
Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China.
Sci Rep. 2023 Dec 27;13(1):23021. doi: 10.1038/s41598-023-50175-4.
To predict massive cerebral infarction (MCI) occurrence after anterior circulation occlusion (ACO) by cASPECTS-CTA-CS (combined ASPECTS and CTA-CS). Of 185 cerebral infarction patients with the ACO, their collateral circulation scores from CT angiography (CTA) images in two groups (MCI and non-MCI) were evaluated using Alberta Stroke Program Early CT Score (ASPECTS) and CT angiography collateral score (CTA-CS) approaches. The cASPECTS-CTA-CS was validated internally using the bootstrap sampling method with 1000 bootstrap repetitions and compared to CTA-CS. Receiver-operating characteristic curve (ROC), clinical impact curve (CIC), and decision curve analysis (DCA) strategies were used to assess the clinical practicality and predictability of both approaches (cASPECTS-CTA-CS and CTA-CS). Using net reclassification improvement (NRI) and integrated discrimination improvement (IDI) analyses, discrimination levels of the cASPECTS-CTA-CS were compared with CTA-CS. Classification and regression tree (CART) analyses was conducted to identify the best predictive values and identify subgroup of MCI. The discrimination ability of collateral circulation evaluation score using the cASPECTS-CTA-CS [AUC: 0.918, 95% confidence interval (CI): 0.869-0.967, P < 0.01; NRI: 0.200, 95% CI: -0.104 to 0.505, P = 0.197; and IDI: 0.107, 95% CI: 0.035-0.178, P = 0.004] was better than CTA-CS alone (AUC: 0.885, 95% CI: 0.833-0.937, P < 0.01). DCA indicated the net benefits of the cASPECTS-CTA-CS approach was higher than CTA-CS alone when the threshold probability range over 20%. CIC analyses showed that the number of high risks and true positives were in agreement when the threshold probability > 80%. Less than 23 of cASPECTS-CTA-CS by CART was important factor in determining MCI occurrence, and ASPECTS < 7 was followed factor. The cASPECTS-CTA-CS approach cumulatively predicted MCI after ACO.
利用 cASPECTS-CTA-CS(联合 ASPECTS 和 CTA-CS)预测前循环闭塞(ACO)后的大面积脑梗死(MCI)发生情况。在 185 例 ACO 脑梗死患者中,通过 Alberta 卒中项目早期 CT 评分(ASPECTS)和 CT 血管造影(CTA)的侧支循环评分(CTA-CS)评估两种评分方法(MCI 和非 MCI)的 CT 血管造影(CTA)图像中的患者的侧支循环评分。使用 bootstrap 抽样方法对 cASPECTS-CTA-CS 进行内部验证,重复 1000 次。并与 CTA-CS 进行比较。使用受试者工作特征曲线(ROC)、临床影响曲线(CIC)和决策曲线分析(DCA)策略来评估两种方法(cASPECTS-CTA-CS 和 CTA-CS)的临床实用性和预测性。使用净重新分类改善(NRI)和综合鉴别改善(IDI)分析比较 cASPECTS-CTA-CS 的鉴别水平与 CTA-CS。通过分类回归树(CART)分析确定最佳预测值和识别 MCI 的亚组。使用 cASPECTS-CTA-CS 进行侧支循环评估评分的区分能力[AUC:0.918,95%置信区间(CI):0.869-0.967,P<0.01;NRI:0.200,95%CI:-0.104 至 0.505,P=0.197;IDI:0.107,95%CI:0.035-0.178,P=0.004]优于 CTA-CS 单独使用(AUC:0.885,95%CI:0.833-0.937,P<0.01)。DCA 表明,当阈值概率范围超过 20%时,cASPECTS-CTA-CS 方法的净收益高于 CTA-CS 单独使用。CIC 分析表明,当阈值概率>80%时,高风险和真正阳性的数量是一致的。CART 分析中,cASPECTS-CTA-CS 的得分小于 23 是确定 MCI 发生的重要因素,ASPECTS<7 是继发病因。cASPECTS-CTA-CS 方法可预测 ACO 后 MCI 的发生。