Suppr超能文献

基于 tfMRI 图像的无监督联合域自适应解码大脑认知状态

Unsupervised Joint Domain Adaptation for Decoding Brain Cognitive States From tfMRI Images.

出版信息

IEEE J Biomed Health Inform. 2024 Mar;28(3):1494-1503. doi: 10.1109/JBHI.2023.3348130. Epub 2024 Mar 6.

Abstract

Recent advances in large model and neuroscience have enabled exploration of the mechanism of brain activity by using neuroimaging data. Brain decoding is one of the most promising researches to further understand the human cognitive function. However, current methods excessively depends on high-quality labeled data, which brings enormous expense of collection and annotation of neural images by experts. Besides, the performance of cross-individual decoding suffers from inconsistency in data distribution caused by individual variation and different collection equipments. To address mentioned above issues, a Join Domain Adapative Decoding (JDAD) framework is proposed for unsupervised decoding specific brain cognitive state related to behavioral task. Based on the volumetric feature extraction from task-based functional Magnetic Resonance Imaging (tfMRI) data, a novel objective loss function is designed by the combination of joint distribution regularizer, which aims to restrict the distance of both the conditional and marginal probability distribution of labeled and unlabeled samples. Experimental results on the public Human Connectome Project (HCP) S1200 dataset show that JDAD achieves superior performance than other prevalent methods, especially for fine-grained task with 11.5%-21.6% improvements of decoding accuracy. The learned 3D features are visualized by Grad-CAM to build a combination with brain functional regions, which provides a novel path to learn the function of brain cortex regions related to specific cognitive task in group level.

摘要

近年来,大型模型和神经科学的进展使得利用神经影像学数据探索大脑活动机制成为可能。脑解码是进一步了解人类认知功能的最有前途的研究之一。然而,当前的方法过度依赖高质量的标记数据,这给专家收集和注释神经图像带来了巨大的费用。此外,跨个体解码的性能受到个体差异和不同采集设备引起的数据分布不一致的影响。为了解决上述问题,提出了一种联合域自适应解码(JDAD)框架,用于无监督解码与行为任务相关的特定大脑认知状态。基于基于任务的功能磁共振成像(tfMRI)数据的体积特征提取,设计了一种新的目标损失函数,通过联合分布正则化器的组合,旨在限制标记和未标记样本的条件和边际概率分布的距离。在公共人类连接组计划(HCP)S1200 数据集上的实验结果表明,JDAD 优于其他流行方法,特别是在具有 11.5%-21.6%解码精度提高的细粒度任务上。通过 Grad-CAM 对学习到的 3D 特征进行可视化,与大脑功能区域相结合,为在组水平上学习与特定认知任务相关的大脑皮质区域的功能提供了一种新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验