Suppr超能文献

使用机器学习方法预测创伤性脑损伤的康复结果

Traumatic Brain Injury Rehabilitation Outcome Prediction Using Machine Learning Methods.

作者信息

Appiah Balaji Nitin Nikamanth, Beaulieu Cynthia L, Bogner Jennifer, Ning Xia

机构信息

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH.

Department of Physical Medicine and Rehabilitation, The Ohio State University College of Medicine, Columbus, OH.

出版信息

Arch Rehabil Res Clin Transl. 2023 Oct 2;5(4):100295. doi: 10.1016/j.arrct.2023.100295. eCollection 2023 Dec.

Abstract

OBJECTIVE

To investigate the performance of machine learning (ML) methods for predicting outcomes from inpatient rehabilitation for subjects with TBI using a dataset with a large number of predictor variables. Our second objective was to identify top predictive features selected by the ML models for each outcome and to validate the interpretability of the models.

DESIGN

Secondary analysis using computational modeling of relationships between patients, injury and treatment activities and 6 outcomes, applied to the large multi-site, prospective, longitudinal observational dataset collected during the traumatic brain injury inpatient rehabilitation study.

SETTING

Acute inpatient rehabilitation.

PARTICIPANTS

1946 patients aged 14 years or older, who sustained a severe, moderate, or complicated mild TBI, and were admitted to 1 of 9 US inpatient rehabilitation sites between 2008 and 2011 (N=1946).

MAIN OUTCOME MEASURES

Rehabilitation length of stay, discharge to home, FIM cognitive and FIM motor at discharge and at 9-months post discharge.

RESULTS

Advanced ML models, specifically gradient boosting tree model, performed consistently better than all other models, including classical linear regression models. Top ranked predictive features were identified for each of the 6 outcome variables. Level of effort, days to rehabilitation admission, age at rehabilitation admission, and advanced mobility activities were the most frequently top ranked predictive features. The highest-ranking predictive feature differed across the specific outcome variable.

CONCLUSIONS

Identifying patient, injury, and rehabilitation treatment variables that are predictive of better outcomes will contribute to cost-effective care delivery and guide evidence-based clinical practice. ML methods can contribute to these efforts.

摘要

目的

使用包含大量预测变量的数据集,研究机器学习(ML)方法对创伤性脑损伤(TBI)患者住院康复结局的预测性能。我们的第二个目标是确定ML模型为每个结局选择的顶级预测特征,并验证模型的可解释性。

设计

采用计算模型对患者、损伤和治疗活动与6种结局之间的关系进行二次分析,应用于在创伤性脑损伤住院康复研究期间收集的大型多中心、前瞻性、纵向观察数据集。

设置

急性住院康复。

参与者

1946名年龄在14岁及以上的患者,他们遭受了严重、中度或复杂的轻度TBI,并于2008年至2011年期间入住美国9个住院康复机构中的1个(N = 1946)。

主要结局指标

康复住院时间、出院回家情况、出院时及出院后9个月时的FIM认知和FIM运动评分。

结果

先进的ML模型,特别是梯度提升树模型,表现始终优于所有其他模型,包括经典线性回归模型。为6个结局变量中的每一个都确定了排名靠前的预测特征。努力程度、康复入院天数、康复入院年龄和高级移动活动是最常排名靠前的预测特征。最高排名的预测特征因具体结局变量而异。

结论

识别出可预测更好结局的患者、损伤和康复治疗变量,将有助于提供具有成本效益的护理,并指导循证临床实践。ML方法可为此类工作做出贡献。

相似文献

1
Traumatic Brain Injury Rehabilitation Outcome Prediction Using Machine Learning Methods.
Arch Rehabil Res Clin Transl. 2023 Oct 2;5(4):100295. doi: 10.1016/j.arrct.2023.100295. eCollection 2023 Dec.
2
Contextualized Treatment in Traumatic Brain Injury Inpatient Rehabilitation: Effects on Outcomes During the First Year After Discharge.
Arch Phys Med Rehabil. 2019 Oct;100(10):1810-1817. doi: 10.1016/j.apmr.2018.12.037. Epub 2019 Feb 1.
4
Advanced Therapy in Traumatic Brain Injury Inpatient Rehabilitation: Effects on Outcomes During the First Year After Discharge.
Arch Phys Med Rehabil. 2019 Oct;100(10):1818-1826. doi: 10.1016/j.apmr.2018.11.015. Epub 2018 Dec 19.
5
Influence of sex and age on inpatient rehabilitation outcomes among older adults with traumatic brain injury.
Arch Phys Med Rehabil. 2010 Jan;91(1):43-50. doi: 10.1016/j.apmr.2009.09.017.
6
A follow-up study of older adults with traumatic brain injury: taking into account decreasing length of stay.
Arch Phys Med Rehabil. 2006 Jan;87(1):57-62. doi: 10.1016/j.apmr.2005.07.309.
7
Effects of Patient Preinjury and Injury Characteristics on Acute Rehabilitation Outcomes for Traumatic Brain Injury.
Arch Phys Med Rehabil. 2015 Aug;96(8 Suppl):S209-21.e6. doi: 10.1016/j.apmr.2015.03.026.
8
Functional motor improvement during inpatient rehabilitation among older adults with traumatic brain injury.
PM R. 2022 Apr;14(4):417-427. doi: 10.1002/pmrj.12644. Epub 2021 Jun 28.
9
Predicting Motor and Cognitive Improvement Through Machine Learning Algorithm in Human Subject that Underwent a Rehabilitation Treatment in the Early Stage of Stroke.
J Stroke Cerebrovasc Dis. 2018 Nov;27(11):2962-2972. doi: 10.1016/j.jstrokecerebrovasdis.2018.06.021. Epub 2018 Aug 2.
10

本文引用的文献

1
Machine learning predicts improvement of functional outcomes in traumatic brain injury patients after inpatient rehabilitation.
Front Rehabil Sci. 2022 Sep 22;3:1005168. doi: 10.3389/fresc.2022.1005168. eCollection 2022.
2
Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm.
NPJ Digit Med. 2022 Jul 18;5(1):96. doi: 10.1038/s41746-022-00652-3.
3
Learning Models for Traumatic Brain Injury Mortality Prediction on Pediatric Electronic Health Records.
Front Neurol. 2022 Jun 10;13:859068. doi: 10.3389/fneur.2022.859068. eCollection 2022.
4
Using Machine Learning to Examine Suicidal Ideation After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems National Database Study.
Am J Phys Med Rehabil. 2023 Feb 1;102(2):137-143. doi: 10.1097/PHM.0000000000002054. Epub 2022 Jun 8.
5
Machine Learning-Based Prediction of Subsequent Vascular Events After 6 Months in Chinese Patients with Minor Ischemic Stroke.
Int J Gen Med. 2022 Apr 7;15:3797-3808. doi: 10.2147/IJGM.S356373. eCollection 2022.
6
Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way?
Biomedicines. 2022 Mar 16;10(3):686. doi: 10.3390/biomedicines10030686.
7
Evaluation of Machine Learning Techniques to Predict the Likelihood of Mental Health Conditions Following a First mTBI.
Front Neurol. 2022 Feb 2;12:769819. doi: 10.3389/fneur.2021.769819. eCollection 2021.
8
Pediatric severe traumatic brain injury mortality prediction determined with machine learning-based modeling.
Injury. 2022 Mar;53(3):992-998. doi: 10.1016/j.injury.2022.01.008. Epub 2022 Jan 5.
10
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population.
Front Neurol. 2020 Jan 24;10:1366. doi: 10.3389/fneur.2019.01366. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验