Institute of Physics, University of Muenster, Heisenbergstr. 11, 48149, Muenster, Germany.
Center for Soft Nanoscience, University of Muenster, Busso-Peuss-Str. 10, 48149, Muenster, Germany.
Adv Sci (Weinh). 2024 Mar;11(12):e2304561. doi: 10.1002/advs.202304561. Epub 2024 Jan 2.
Targeted manipulation of neural activity via light has become an indispensable tool for gaining insights into the intricate processes governing single neurons and complex neural networks. To shed light onto the underlying interaction mechanisms, it is crucial to achieve precise control of individual neural activity, as well as a spatial read-out resolution on the nanoscale. Here, a versatile photonic platform with subcellular resolution for stimulation and monitoring of in-vitro neurons is demonstrated. Low-loss photonic waveguides are fabricated on glass substrates using nanoimprint lithography and featuring a loss of only -0.9 ± 0.2 dB cm at 489 nm and are combined with optical fiber-based waveguide-access and backside total internal reflection fluorescence microscopy. Neurons are grown on the bio-functionalized photonic chip surface and, expressing the light-sensitive ion channel Channelrhodopsin-2, are stimulated within the evanescent field penetration depth of 57 nm of the biocompatible waveguides. The versatility and cost-efficiency of the platform, along with the possible subcellular resolution, enable tailor-made investigations of neural interaction dynamics with defined spatial control and high throughput.
通过光对神经活动进行靶向操控已经成为深入了解单个神经元和复杂神经网络所涉及的复杂过程的不可或缺的工具。为了揭示潜在的相互作用机制,精确控制单个神经活动以及在纳米尺度上进行空间读出分辨率至关重要。本文展示了一种用于体外神经元刺激和监测的具有亚细胞分辨率的多功能光子平台。采用纳米压印光刻技术在玻璃衬底上制造低损耗光子波导,在 489nm 处损耗仅为-0.9±0.2dB/cm,并结合基于光纤的波导接入和背面全内反射荧光显微镜。将神经元生长在生物功能化的光子芯片表面,并在生物兼容波导的 57nm 消逝场穿透深度内对表达光敏感离子通道 Channelrhodopsin-2 的神经元进行刺激。该平台的多功能性和成本效益,以及可能的亚细胞分辨率,使得能够对具有明确定义的空间控制和高通量的神经相互作用动力学进行定制化研究。