Mardinly Alan R, Oldenburg Ian Antón, Pégard Nicolas C, Sridharan Savitha, Lyall Evan H, Chesnov Kirill, Brohawn Stephen G, Waller Laura, Adesnik Hillel
Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, CA, USA.
Nat Neurosci. 2018 Jun;21(6):881-893. doi: 10.1038/s41593-018-0139-8. Epub 2018 Apr 30.
Understanding brain function requires technologies that can control the activity of large populations of neurons with high fidelity in space and time. We developed a multiphoton holographic approach to activate or suppress the activity of ensembles of cortical neurons with cellular resolution and sub-millisecond precision. Since existing opsins were inadequate, we engineered new soma-targeted (ST) optogenetic tools, ST-ChroME and IRES-ST-eGtACR1, optimized for multiphoton activation and suppression. Employing a three-dimensional all-optical read-write interface, we demonstrate the ability to simultaneously photostimulate up to 50 neurons distributed in three dimensions in a 550 × 550 × 100-µm volume of brain tissue. This approach allows the synthesis and editing of complex neural activity patterns needed to gain insight into the principles of neural codes.
要理解大脑功能,需要能够在空间和时间上以高保真度控制大量神经元活动的技术。我们开发了一种多光子全息方法,以细胞分辨率和亚毫秒精度激活或抑制皮层神经元集群的活动。由于现有的视蛋白并不适用,我们设计了新的靶向胞体(ST)光遗传学工具,即ST-ChroME和IRES-ST-eGtACR1,它们针对多光子激活和抑制进行了优化。利用三维全光读写接口,我们展示了在550×550×100μm的脑组织体积中同时光刺激分布在三个维度上多达50个神经元的能力。这种方法允许合成和编辑复杂的神经活动模式,从而深入了解神经编码的原理。