Schnauber Peter, Singh Anshuman, Schall Johannes, Park Suk In, Song Jin Dong, Rodt Sven, Srinivasan Kartik, Reitzenstein Stephan, Davanco Marcelo
Institute of Solid State Physics , Technische Universität Berlin , Berlin 10623 , Germany.
National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States.
Nano Lett. 2019 Oct 9;19(10):7164-7172. doi: 10.1021/acs.nanolett.9b02758. Epub 2019 Sep 13.
Silicon photonics enables scaling of quantum photonic systems by allowing the creation of extensive, low-loss, reconfigurable networks linking various functional on-chip elements. Inclusion of single quantum emitters onto photonic circuits, acting as on-demand sources of indistinguishable photons or single-photon nonlinearities, may enable large-scale chip-based quantum photonic circuits and networks. Toward this, we use low-temperature in situ electron-beam lithography to deterministically produce hybrid GaAs/SiN photonic devices containing single InAs quantum dots precisely located inside nanophotonic structures, which act as efficient, SiN waveguide-coupled on-chip, on-demand single-photon sources. The precise positioning afforded by our scalable fabrication method furthermore allows observation of postselected indistinguishable photons. This indicates a promising path toward significant scaling of chip-based quantum photonics, enabled by large fluxes of indistinguishable single-photons produced on-demand, directly on-chip.
硅光子学通过允许创建连接各种功能性片上元件的广泛、低损耗、可重构网络,实现了量子光子系统的扩展。将单量子发射器集成到光子电路中,作为不可区分光子或单光子非线性的按需光源,可能会实现大规模的基于芯片的量子光子电路和网络。为此,我们使用低温原位电子束光刻技术,确定性地生产混合GaAs/SiN光子器件,该器件包含精确位于纳米光子结构内的单个InAs量子点,这些量子点作为高效的、与SiN波导耦合的片上按需单光子源。我们的可扩展制造方法所提供的精确定位,还允许观察后选择的不可区分光子。这表明了一条通往基于芯片的量子光子学显著扩展的有前景的路径,该扩展由直接在芯片上按需产生的大量不可区分单光子通量实现。