Suppr超能文献

图神经网络和机器学习对精神分裂症功能神经影像学的分析研究

Graph neural network and machine learning analysis of functional neuroimaging for understanding schizophrenia.

机构信息

PES Center for Pattern Recognition, Department of Computer Science and Engineering, PES University, 100 Feet Ring Road, III Stage BSK, Dwaraka Nagar, Bengaluru, Karnataka, 560085, India.

出版信息

BMC Neurosci. 2024 Jan 2;25(1):2. doi: 10.1186/s12868-023-00841-0.

Abstract

BACKGROUND

Graph representational learning can detect topological patterns by leveraging both the network structure as well as nodal features. The basis of our exploration involves the application of graph neural network architectures and machine learning to resting-state functional Magnetic Resonance Imaging (rs-fMRI) data for the purpose of detecting schizophrenia. Our study uses single-site data to avoid the shortcomings in generalizability of neuroimaging data obtained from multiple sites.

RESULTS

The performance of our graph neural network models is on par with that of our machine learning models, each of which is trained using 69 graph-theoretical measures computed from functional correlations between various regions of interest (ROI) in a brain graph. Our deep graph convolutional neural network (DGCNN) demonstrates a promising average accuracy score of 0.82 and a sensitivity score of 0.84.

CONCLUSIONS

This study provides insights into the role of advanced graph theoretical methods and machine learning on fMRI data to detect schizophrenia by harnessing changes in brain functional connectivity. The results of this study demonstrate the capabilities of using both traditional ML techniques as well as graph neural network-based methods to detect schizophrenia using features extracted from fMRI data. The study also proposes two methods to obtain potential biomarkers for the disease, many of which are corroborated by research in this area and can further help in the understanding of schizophrenia as a mental disorder.

摘要

背景

图表示学习可以通过利用网络结构和节点特征来检测拓扑模式。我们的探索基础包括将图神经网络架构和机器学习应用于静息态功能磁共振成像 (rs-fMRI) 数据,以检测精神分裂症。我们的研究使用单站点数据来避免从多个站点获得的神经影像学数据的可推广性的缺点。

结果

我们的图神经网络模型的性能与我们的机器学习模型相当,每个模型都使用从大脑图中各个感兴趣区域 (ROI) 之间的功能相关性计算得出的 69 个图论度量值进行训练。我们的深度图卷积神经网络 (DGCNN) 表现出有希望的平均准确率为 0.82 和灵敏度为 0.84。

结论

本研究探讨了利用大脑功能连接变化,通过先进的图理论方法和机器学习对 fMRI 数据进行精神分裂症检测的作用。本研究的结果表明,使用从 fMRI 数据中提取的特征,既可以使用传统的 ML 技术,也可以使用基于图神经网络的方法来检测精神分裂症。该研究还提出了两种获得疾病潜在生物标志物的方法,其中许多方法都得到了该领域研究的证实,并有助于进一步理解精神分裂症作为一种精神障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/986c/10759601/34acaa539a95/12868_2023_841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验