Department of Electrical and Computer Engineering, Semnan University, Semnan, 3513119111, Iran.
Sci Rep. 2024 Jan 2;14(1):168. doi: 10.1038/s41598-023-50723-y.
This paper aims to evaluate a groundbreaking bio-TFET that utilizes the fringe fields capacitance concept to detect neutral and charged biomolecules. While facilitating fabrication process and scalability, this innovative bio-TFET is able to rival the conventional bio-TFET which relies on carving cavities in the gate oxide. The cavities of the proposed device are carved in the spacers over the source region and in the vicinity of the gate metal. Inserting biomolecules in the cavities of our bio-TFET modifies the fringe fields arising out of the gate metal. As a result, these spacers modulate tunneling barrier width at the source-channel tunneling junction. We have assessed our proposed device's DC/RF performance using the calibrated Silvaco ATLAS device simulator. For further evaluation of the reliability of our bio-TFET, non-idealities, such as trap-assisted tunneling and temperature, are also studied. The device we propose is highly suitable for biosensing applications, as evidenced by the parameters of [Formula: see text] = 1.21 × 10, S = 0.365, and [Formula: see text] = 1.63 × 10 at V = 1 V.
本文旨在评估一种开创性的生物 TFET,该生物 TFET 利用边缘场电容概念来检测中性和带电生物分子。在促进制造工艺和可扩展性的同时,这种创新的生物 TFET 能够与传统的生物 TFET 相媲美,传统的生物 TFET 依赖于在栅氧层中刻蚀空腔。所提出的器件的空腔被刻蚀在源区上方的间隔物中和栅极金属附近。将生物分子插入我们的生物 TFET 的空腔中会改变栅极金属产生的边缘场。结果,这些间隔物调节源-通道隧穿结处的隧穿势垒宽度。我们使用经过校准的 Silvaco ATLAS 器件模拟器评估了我们提出的器件的直流/射频性能。为了进一步评估我们的生物 TFET 的可靠性,还研究了非理想因素,如陷阱辅助隧穿和温度。我们提出的器件非常适合生物传感应用,这可以从参数 [公式:见正文] = 1.21×10、S = 0.365 和 [公式:见正文] = 1.63×10 在 V = 1 V 时得到证明。