Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
Nano Lett. 2010 Feb 10;10(2):547-52. doi: 10.1021/nl9034219.
Nanowire field-effect transistors (NW-FETs) are emerging as powerful sensors for detection of chemical/biological species with various attractive features including high sensitivity and direct electrical readout. Yet to date there have been limited systematic studies addressing how the fundamental factors of devices affect their sensitivity. Here we demonstrate that the sensitivity of NW-FET sensors can be exponentially enhanced in the subthreshold regime where the gating effect of molecules bound on a surface is the most effective due to the reduced screening of carriers in NWs. This principle is exemplified in both pH and protein sensing experiments where the operational mode of NW-FET biosensors was tuned by electrolyte gating. The lowest charge detectable by NW-FET sensors working under different operational modes is also estimated. Our work shows that optimization of NW-FET structure and operating conditions can provide significant enhancement and fundamental understanding for the sensitivity limits of NW-FET sensors.
纳米线场效应晶体管(NW-FET)作为化学/生物物种检测的有力传感器,具有高灵敏度和直接电读出等多种吸引人的特性。然而,迄今为止,对于器件的基本因素如何影响其灵敏度,还没有进行系统的研究。在这里,我们证明了在亚阈值区,由于 NW 中载流子的屏蔽作用降低,表面结合分子的门控效应最为有效,NW-FET 传感器的灵敏度可以呈指数级增强。这一原理在 pH 值和蛋白质传感实验中得到了例证,其中通过电解质门控来调整 NW-FET 生物传感器的工作模式。还估计了在不同工作模式下工作的 NW-FET 传感器可检测的最小电荷量。我们的工作表明,优化 NW-FET 的结构和工作条件可以为 NW-FET 传感器的灵敏度极限提供显著的增强和基本的理解。