Roth Daniel, Larsson Erik, Strand Joanna, Ljungberg Michael, Sjögreen Gleisner Katarina
Medical Radiation Physics, Lund, Lund University, Lund, Sweden.
Department of Radiation Physics, Skåne University Hospital, Lund, Sweden.
EJNMMI Phys. 2024 Jan 3;11(1):2. doi: 10.1186/s40658-023-00602-2.
In image processing for activity quantification, the end goal is to produce a metric that is independent of the measurement geometry. Photon attenuation needs to be accounted for and can be accomplished utilizing spectral information, avoiding the need of additional image acquisitions. The aim of this work is to investigate the feasibility of Lu activity quantification with a small CZT-based hand-held gamma-camera, using such an attenuation correction method.
A previously presented dual photopeak method, based on the differential attenuation for two photon energies, is adapted for the three photopeaks at 55 keV, 113 keV, and 208 keV for Lu. The measurement model describes the count rates in each energy window as a function of source depth and activity, accounting for distance-dependent system sensitivity, attenuation, and build-up. Parameter values are estimated from characterizing measurements, and the source depth and activity are obtained by minimizing the difference between measured and modelled count rates. The method is applied and evaluated in phantom measurements, in a clinical setting for superficial lesions in two patients, and in a pre-clinical setting for one human tumour xenograft. Evaluation is made for a LEHR and an MEGP collimator.
For phantom measurements at clinically relevant depths, the average (and standard deviation) in activity errors are 17% ± 9.6% (LEHR) and 2.9% ± 3.6% (MEGP). For patient measurements, deviations from activity estimates from planar images from a full-sized gamma-camera are 0% ± 21% (LEHR) and 16% ± 18% (MEGP). For mouse measurements, average deviations of - 16% (LEHR) and - 6% (MEGP) are obtained when compared to a small-animal SPECT/CT system. The MEGP collimator appears to be better suited for activity quantification, yielding a smaller variability in activity estimates, whereas the LEHR results are more severely affected by septal penetration.
Activity quantification for Lu using the hand-held camera is found to be feasible. The readily available nature of the hand-held camera may enable more frequent activity quantification in e.g., superficial structures in patients or in the pre-clinical setting.
在用于活动定量的图像处理中,最终目标是生成一个与测量几何形状无关的指标。需要考虑光子衰减,并且可以利用光谱信息来实现,从而无需额外的图像采集。这项工作的目的是研究使用基于小型碲锌镉(CZT)的手持式伽马相机,采用这种衰减校正方法对镥(Lu)进行活动定量的可行性。
一种先前提出的基于两种光子能量的微分衰减的双光电峰方法,被应用于镥的55 keV、113 keV和208 keV的三个光电峰。测量模型将每个能量窗口中的计数率描述为源深度和活度的函数,同时考虑了与距离相关的系统灵敏度、衰减和积累。通过特征测量估计参数值,并通过最小化测量计数率与建模计数率之间的差异来获得源深度和活度。该方法在体模测量、两名患者浅表病变的临床环境以及一人源肿瘤异种移植的临床前环境中进行了应用和评估。对低能高分辨率(LEHR)准直器和中能通用型(MEGP)准直器进行了评估。
对于临床相关深度的体模测量,活度误差的平均值(和标准差)分别为17%±9.6%(LEHR)和2.9%±3.6%(MEGP)。对于患者测量,与全尺寸伽马相机的平面图像的活度估计偏差分别为0%±21%(LEHR)和16%±18%(MEGP)。对于小鼠测量,与小动物单光子发射计算机断层扫描/计算机断层扫描(SPECT/CT)系统相比,平均偏差分别为-16%(LEHR)和-6%(MEGP)。MEGP准直器似乎更适合进行活度定量,活度估计的变异性较小,而LEHR的结果受隔板穿透的影响更严重。
发现使用手持式相机对镥进行活度定量是可行的。手持式相机的现成特性可能使例如患者浅表结构或临床前环境中的活度定量更频繁地进行。