Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France.
Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005, Paris, France.
Nat Commun. 2024 Jan 2;15(1):75. doi: 10.1038/s41467-023-44379-5.
Microbial communities are shaped by complex metabolic interactions such as cooperation and competition for resources. Methods to control such interactions could lead to major advances in our ability to better engineer microbial consortia for synthetic biology applications. Here, we use optogenetics to control SUC2 invertase production in yeast, thereby shaping spatial assortment of cooperator and cheater cells. Yeast cells behave as cooperators (i.e., transform sucrose into hexose, a public good) upon blue light illumination or cheaters (i.e., consume hexose produced by cooperators to grow) in the dark. We show that cooperators benefit best from the hexoses they produce when their domain size is constrained between two cut-off length-scales. From an engineering point of view, the system behaves as a bandpass filter. The lower limit is the trace of cheaters' competition for hexoses, while the upper limit is defined by cooperators' competition for sucrose. Cooperation mostly occurs at the frontiers with cheater cells, which not only compete for hexoses but also cooperate passively by letting sucrose reach cooperators. We anticipate that this optogenetic method could be applied to shape metabolic interactions in a variety of microbial ecosystems.
微生物群落的形成受到复杂的代谢相互作用的影响,例如资源的合作和竞争。控制这些相互作用的方法可以使我们更好地设计微生物群落,以满足合成生物学应用的需求。在这里,我们使用光遗传学来控制酵母中 SUC2 转化酶的产生,从而形成合作者和骗子细胞的空间排列。当酵母细胞受到蓝光照射时,它们表现为合作者(即,将蔗糖转化为己糖,这是一种公共利益),而在黑暗中,它们表现为骗子(即,消耗合作者产生的己糖来生长)。我们表明,当合作者的领域大小受到两个截止长度尺度的限制时,它们从自己产生的己糖中获益最大。从工程学的角度来看,该系统表现为带通滤波器。下限是骗子对己糖竞争的痕迹,而上限则由合作者对蔗糖的竞争决定。合作者主要与骗子细胞的边界处发生合作,这些细胞不仅竞争己糖,而且通过让蔗糖到达合作者,被动地合作。我们预计这种光遗传学方法可以应用于塑造各种微生物生态系统中的代谢相互作用。