文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

实时检测变压器 (RT-DETR) 目标检测算法对薄血涂片上四种 物种的自动患者水平识别:概念验证和评估。

Automatic patient-level recognition of four species on thin blood smear by a real-time detection transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation.

机构信息

Department of Parasitology and Mycology, Academic Hospital (CHU) of Toulouse, Toulouse, France.

Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France.

出版信息

Microbiol Spectr. 2024 Feb 6;12(2):e0144023. doi: 10.1128/spectrum.01440-23. Epub 2024 Jan 3.


DOI:10.1128/spectrum.01440-23
PMID:38171008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10846087/
Abstract

Malaria remains a global health problem, with 247 million cases and 619,000 deaths in 2021. Diagnosis of species is important for administering the appropriate treatment. The gold-standard diagnosis for accurate species identification remains the thin blood smear. Nevertheless, this method is time-consuming and requires highly skilled and trained microscopists. To overcome these issues, new diagnostic tools based on deep learning are emerging. This study aimed to evaluate the performances of a real-time detection transformer (RT-DETR) object detection algorithm to discriminate species on thin blood smear images. The algorithm was trained and validated on a data set consisting in 24,720 images from 475 thin blood smears corresponding to 2,002,597 labels. Performances were calculated with a test data set of 4,508 images from 170 smears corresponding to 358,825 labels coming from six French university hospitals. At the patient level, the RT-DETR algorithm exhibited an overall accuracy of 79.4% (135/170) with a recall of 74% (40/54) and 81.9% (95/116) for negative and positive smears, respectively. Among positive smears, the global accuracy was 82.7% (91/110) with a recall of 90% (38/42), 81.8% (18/22), and 76.1% (35/46) for , and respectively. The RT-DETR model achieved a World Health Organization (WHO) competence level 2 for species identification. Besides, the RT-DETR algorithm may be run in real-time on low-cost devices such as a smartphone and could be suitable for deployment in low-resource setting areas lacking microscopy experts.IMPORTANCEMalaria remains a global health problem, with 247 million cases and 619,000 deaths in 2021. Diagnosis of species is important for administering the appropriate treatment. The gold-standard diagnosis for accurate species identification remains the thin blood smear. Nevertheless, this method is time-consuming and requires highly skilled and trained microscopists. To overcome these issues, new diagnostic tools based on deep learning are emerging. This study aimed to evaluate the performances of a real-time detection transformer (RT-DETR) object detection algorithm to discriminate species on thin blood smear images. Performances were calculated with a test data set of 4,508 images from 170 smears coming from six French university hospitals. The RT-DETR model achieved a World Health Organization (WHO) competence level 2 for species identification. Besides, the RT-DETR algorithm may be run in real-time on low-cost devices and could be suitable for deployment in low-resource setting areas.

摘要

疟疾仍然是一个全球性的健康问题,2021 年有 2.47 亿例病例和 61.9 万人死亡。鉴定 疟原虫种类对于给予适当的治疗很重要。准确识别物种的金标准诊断仍然是薄血涂片。然而,这种方法耗时,需要高度熟练和训练有素的显微镜专家。为了克服这些问题,基于深度学习的新诊断工具正在出现。本研究旨在评估实时检测变压器 (RT-DETR) 目标检测算法在薄血涂片图像上区分 疟原虫种类的性能。该算法在一个由 475 张薄血涂片 24,720 张图像组成的数据集上进行了训练和验证,这些图像对应 2002,597 个标签。使用来自六个法国大学医院的 170 张涂片的 4,508 张图像的测试数据集计算性能,这些涂片对应 358,825 个标签,来自 6 名患者。在患者水平上,RT-DETR 算法的总体准确率为 79.4%(170/214),阴性涂片的召回率为 74%(40/54),阳性涂片的召回率为 81.9%(95/116)。在阳性涂片,总体准确率为 82.7%(110/134),召回率为 90%(38/42)、81.8%(18/22)和 76.1%(35/46),分别为 、 和 。RT-DETR 模型达到了世界卫生组织(WHO)的物种鉴定能力 2 级。此外,RT-DETR 算法可以在低成本设备(如智能手机)上实时运行,并且可以适合部署在缺乏显微镜专家的资源有限的环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fadf/10846087/95c3e469b34c/spectrum.01440-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fadf/10846087/fd7994fd5c31/spectrum.01440-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fadf/10846087/95c3e469b34c/spectrum.01440-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fadf/10846087/fd7994fd5c31/spectrum.01440-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fadf/10846087/95c3e469b34c/spectrum.01440-23.f002.jpg

相似文献

[1]
Automatic patient-level recognition of four species on thin blood smear by a real-time detection transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation.

Microbiol Spectr. 2024-2-6

[2]
Assessment of Expert-Level Automated Detection of Plasmodium falciparum in Digitized Thin Blood Smear Images.

JAMA Netw Open. 2020-2-5

[3]
Patient-level performance evaluation of a smartphone-based malaria diagnostic application.

Malar J. 2023-1-27

[4]
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.

BMC Bioinformatics. 2021-3-8

[5]
Plasmodium species differentiation by non-expert on-line volunteers for remote malaria field diagnosis.

Malar J. 2018-1-30

[6]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[7]
A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears.

PLoS One. 2014-8-21

[8]
Application of Deep Learning in Clinical Settings for Detecting and Classifying Malaria Parasites in Thin Blood Smears.

Open Forum Infect Dis. 2023-9-15

[9]
Cryptic Plasmodium ovale concurrent with mixed Plasmodium falciparum and Plasmodium malariae infection in two children from Central African Republic.

Malar J. 2017-8-15

[10]
A novel deep learning-based point-of-care diagnostic method for detecting Plasmodium falciparum with fluorescence digital microscopy.

PLoS One. 2020-11-17

引用本文的文献

[1]
Precision enhancement in wireless capsule endoscopy: a novel transformer-based approach for real-time video object detection.

Front Artif Intell. 2025-4-30

[2]
Bearing-DETR: A Lightweight Deep Learning Model for Bearing Defect Detection Based on RT-DETR.

Sensors (Basel). 2024-6-30

本文引用的文献

[1]
Deep Learning and Transfer Learning for Malaria Detection.

Comput Intell Neurosci. 2022

[2]
Malaria parasite classification framework using a novel channel squeezed and boosted CNN.

Microscopy (Oxf). 2022-10-6

[3]
Field evaluation of the diagnostic performance of EasyScan GO: a digital malaria microscopy device based on machine-learning.

Malar J. 2022-4-12

[4]
Automated detection and staging of malaria parasites from cytological smears using convolutional neural networks.

Biol Imaging. 2021-8-2

[5]
Applying Faster R-CNN for Object Detection on Malaria Images.

Conf Comput Vis Pattern Recognit Workshops. 2017-7

[6]
Automatic segmentation of blood cells from microscopic slides: A comparative analysis.

Tissue Cell. 2021-12

[7]
Multi-stage malaria parasite recognition by deep learning.

Gigascience. 2021-6-17

[8]
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.

BMC Bioinformatics. 2021-3-8

[9]
Performance of a fully-automated system on a WHO malaria microscopy evaluation slide set.

Malar J. 2021-2-25

[10]
A deep learning approach to the screening of malaria infection: Automated and rapid cell counting, object detection and instance segmentation using Mask R-CNN.

Comput Med Imaging Graph. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索