文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于智能手机的疟疾诊断应用的患者水平性能评估。

Patient-level performance evaluation of a smartphone-based malaria diagnostic application.

机构信息

Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, MD, Bethesda, USA.

Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, Medical Campus, University of Khartoum, Khartoum, Sudan.

出版信息

Malar J. 2023 Jan 27;22(1):33. doi: 10.1186/s12936-023-04446-0.


DOI:10.1186/s12936-023-04446-0
PMID:36707822
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9883923/
Abstract

BACKGROUND: Microscopic examination is commonly used for malaria diagnosis in the field. However, the lack of well-trained microscopists in malaria-endemic areas impacted the most by the disease is a severe problem. Besides, the examination process is time-consuming and prone to human error. Automated diagnostic systems based on machine learning offer great potential to overcome these problems. This study aims to evaluate Malaria Screener, a smartphone-based application for malaria diagnosis. METHODS: A total of 190 patients were recruited at two sites in rural areas near Khartoum, Sudan. The Malaria Screener mobile application was deployed to screen Giemsa-stained blood smears. Both expert microscopy and nested PCR were performed to use as reference standards. First, Malaria Screener was evaluated using the two reference standards. Then, during post-study experiments, the evaluation was repeated for a newly developed algorithm, PlasmodiumVF-Net. RESULTS: Malaria Screener reached 74.1% (95% CI 63.5-83.0) accuracy in detecting Plasmodium falciparum malaria using expert microscopy as the reference after a threshold calibration. It reached 71.8% (95% CI 61.0-81.0) accuracy when compared with PCR. The achieved accuracies meet the WHO Level 3 requirement for parasite detection. The processing time for each smear varies from 5 to 15 min, depending on the concentration of white blood cells (WBCs). In the post-study experiment, Malaria Screener reached 91.8% (95% CI 83.8-96.6) accuracy when patient-level results were calculated with a different method. This accuracy meets the WHO Level 1 requirement for parasite detection. In addition, PlasmodiumVF-Net, a newly developed algorithm, reached 83.1% (95% CI 77.0-88.1) accuracy when compared with expert microscopy and 81.0% (95% CI 74.6-86.3) accuracy when compared with PCR, reaching the WHO Level 2 requirement for detecting both Plasmodium falciparum and Plasmodium vivax malaria, without using the testing sites data for training or calibration. Results reported for both Malaria Screener and PlasmodiumVF-Net used thick smears for diagnosis. In this paper, both systems were not assessed in species identification and parasite counting, which are still under development. CONCLUSION: Malaria Screener showed the potential to be deployed in resource-limited areas to facilitate routine malaria screening. It is the first smartphone-based system for malaria diagnosis evaluated on the patient-level in a natural field environment. Thus, the results in the field reported here can serve as a reference for future studies.

摘要

背景:显微镜检查常用于现场诊断疟疾。然而,在受疟疾影响最严重的疟疾流行地区,缺乏经过良好培训的显微镜检查人员是一个严重的问题。此外,检查过程耗时且容易出现人为错误。基于机器学习的自动化诊断系统具有很大的潜力,可以克服这些问题。本研究旨在评估 Malaria Screener,这是一种用于疟疾诊断的基于智能手机的应用程序。

方法:在苏丹喀土穆附近的两个农村地区共招募了 190 名患者。Malaria Screener 移动应用程序用于筛查吉姆萨染色血涂片。专家显微镜检查和巢式 PCR 均用于作为参考标准。首先,使用两种参考标准评估 Malaria Screener。然后,在研究后的实验中,为新开发的算法 PlasmodiumVF-Net 重复了评估。

结果:Malaria Screener 在使用专家显微镜检查作为参考标准进行阈值校准后,在检测恶性疟原虫疟疾方面达到了 74.1%(95%CI 63.5-83.0)的准确率。当与 PCR 相比时,它达到了 71.8%(95%CI 61.0-81.0)的准确率。所达到的准确率符合寄生虫检测的世卫组织第 3 级要求。每张涂片的处理时间从 5 到 15 分钟不等,具体取决于白细胞(WBC)的浓度。在研究后的实验中,当使用不同的方法计算患者水平的结果时,Malaria Screener 达到了 91.8%(95%CI 83.8-96.6)的准确率。这种准确率符合寄生虫检测的世卫组织第 1 级要求。此外,新开发的算法 PlasmodiumVF-Net 在与专家显微镜检查相比时达到了 83.1%(95%CI 77.0-88.1)的准确率,在与 PCR 相比时达到了 81.0%(95%CI 74.6-86.3)的准确率,达到了同时检测恶性疟原虫和间日疟原虫的世卫组织第 2 级要求,无需使用测试地点的数据进行培训或校准。为了诊断,本文报告的 Malaria Screener 和 PlasmodiumVF-Net 的结果均使用厚涂片。本文并未评估这两个系统在物种鉴定和寄生虫计数方面的能力,这些方面仍在开发中。

结论:Malaria Screener 显示出在资源有限的地区部署的潜力,以促进常规疟疾筛查。它是第一个在自然野外环境中在患者水平上评估的基于智能手机的疟疾诊断系统。因此,这里报告的现场结果可以作为未来研究的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/75552461044a/12936_2023_4446_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/44ff51367037/12936_2023_4446_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/a480757bae84/12936_2023_4446_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/0f11a8f641e1/12936_2023_4446_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/10eb63f94456/12936_2023_4446_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/75552461044a/12936_2023_4446_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/44ff51367037/12936_2023_4446_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/a480757bae84/12936_2023_4446_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/0f11a8f641e1/12936_2023_4446_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/10eb63f94456/12936_2023_4446_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5119/9883923/75552461044a/12936_2023_4446_Fig5_HTML.jpg

相似文献

[1]
Patient-level performance evaluation of a smartphone-based malaria diagnostic application.

Malar J. 2023-1-27

[2]
Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru.

Malar J. 2018-9-25

[3]
Malaria Screener: a smartphone application for automated malaria screening.

BMC Infect Dis. 2020-11-11

[4]
Field evaluation of the diagnostic performance of EasyScan GO: a digital malaria microscopy device based on machine-learning.

Malar J. 2022-4-12

[5]
Devices for rapid diagnosis of Malaria: evaluation of prototype assays that detect Plasmodium falciparum histidine-rich protein 2 and a Plasmodium vivax-specific antigen.

J Clin Microbiol. 2003-6

[6]
Evaluating performance of multiplex real time PCR for the diagnosis of malaria at elimination targeted low transmission settings of Ethiopia.

Malar J. 2022-1-6

[7]
Automatic patient-level recognition of four species on thin blood smear by a real-time detection transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation.

Microbiol Spectr. 2024-2-6

[8]
Comparison of PCR and microscopy for the detection of asymptomatic malaria in a Plasmodium falciparum/vivax endemic area in Thailand.

Malar J. 2006-12-14

[9]
Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR.

Malar J. 2012-6-10

[10]
Evaluation of malaria multiplex/nested PCR performance at low parasite densities and mixed infection in Iran: A country close to malaria elimination.

Infect Genet Evol. 2018-8-7

引用本文的文献

[1]
Performance of a smartphone-based malaria screener in detecting malaria in people living with Sickle cell disease.

PLOS Digit Health. 2025-6-9

[2]
Application of Machine Learning in a Rodent Malaria Model for Rapid, Accurate, and Consistent Parasite Counts.

Am J Trop Med Hyg. 2024-11-6

[3]
Diagnostic accuracy of an automated microscope solution (miLab™) in detecting malaria parasites in symptomatic patients at point-of-care in Sudan: a case-control study.

Malar J. 2024-6-28

[4]
Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy.

PLoS Negl Trop Dis. 2024-4

[5]
: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope.

Front Microbiol. 2023-11-24

[6]
Machine learning-based phenotypic imaging to characterise the targetable biology of Plasmodium falciparum male gametocytes for the development of transmission-blocking antimalarials.

PLoS Pathog. 2023-10

本文引用的文献

[1]
Field evaluation of the diagnostic performance of EasyScan GO: a digital malaria microscopy device based on machine-learning.

Malar J. 2022-4-12

[2]
Diagnosing Malaria Patients with and Using Deep Learning for Thick Smear Images.

Diagnostics (Basel). 2021-10-27

[3]
Performance of a fully-automated system on a WHO malaria microscopy evaluation slide set.

Malar J. 2021-2-25

[4]
Malaria Screener: a smartphone application for automated malaria screening.

BMC Infect Dis. 2020-11-11

[5]
Expert-level automated malaria diagnosis on routine blood films with deep neural networks.

Am J Hematol. 2020-4-30

[6]
Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting.

J Digit Imaging. 2020-6

[7]
Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears.

IEEE J Biomed Health Inform. 2020-5

[8]
Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images.

PeerJ. 2018-4-16

[9]
Image analysis and machine learning for detecting malaria.

Transl Res. 2018-1-12

[10]
Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner.

J Biophotonics. 2018-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索