Suppr超能文献

轴承-DETR:一种基于RT-DETR的用于轴承缺陷检测的轻量级深度学习模型。

Bearing-DETR: A Lightweight Deep Learning Model for Bearing Defect Detection Based on RT-DETR.

作者信息

Liu Minggao, Wang Haifeng, Du Luyao, Ji Fangsong, Zhang Ming

机构信息

School of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

School of Information Science and Engineering, Linyi University, Linyi 276002, China.

出版信息

Sensors (Basel). 2024 Jun 30;24(13):4262. doi: 10.3390/s24134262.

Abstract

Detecting bearing defects accurately and efficiently is critical for industrial safety and efficiency. This paper introduces Bearing-DETR, a deep learning model optimised using the Real-Time Detection Transformer (RT-DETR) architecture. Enhanced with Dysample Dynamic Upsampling, Efficient Model Optimization (EMO) with Meta-Mobile Blocks (MMB), and Deformable Large Kernel Attention (D-LKA), Bearing-DETR offers significant improvements in defect detection while maintaining a lightweight framework suitable for low-resource devices. Validated on a dataset from a chemical plant, Bearing-DETR outperformed the standard RT-DETR, achieving a mean average precision (mAP) of 94.3% at IoU = 0.5 and 57.5% at IoU = 0.5-0.95. It also reduced floating-point operations (FLOPs) to 8.2 G and parameters to 3.2 M, underscoring its enhanced efficiency and reduced computational demands. These results demonstrate the potential of Bearing-DETR to transform maintenance strategies and quality control across manufacturing environments, emphasising adaptability and impact on sustainability and operational costs.

摘要

准确、高效地检测轴承缺陷对于工业安全和效率至关重要。本文介绍了Bearing-DETR,这是一种使用实时检测变压器(RT-DETR)架构优化的深度学习模型。通过欠采样动态上采样、带有元移动块(MMB)的高效模型优化(EMO)和可变形大内核注意力(D-LKA)进行增强,Bearing-DETR在缺陷检测方面有显著改进,同时保持了适用于低资源设备的轻量级框架。在一个化工厂的数据集上进行验证,Bearing-DETR优于标准的RT-DETR,在IoU = 0.5时平均精度均值(mAP)达到94.3%,在IoU = 0.5 - 0.95时达到57.5%。它还将浮点运算(FLOPs)减少到8.2 G,参数减少到3.2 M,突出了其更高的效率和更低的计算需求。这些结果证明了Bearing-DETR在转变整个制造环境中的维护策略和质量控制方面的潜力,强调了其适应性以及对可持续性和运营成本的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ca/11244500/affea4f56b17/sensors-24-04262-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验