Räz Tim
University of Bern, Institute of Philosophy, Länggassstrasse 49a, 3012 Bern, Switzerland.
Stud Hist Philos Sci. 2024 Feb;103:159-167. doi: 10.1016/j.shpsa.2023.12.007. Epub 2024 Jan 3.
The interpretability of ML models is important, but it is not clear what it amounts to. So far, most philosophers have discussed the lack of interpretability of black-box models such as neural networks, and methods such as explainable AI that aim to make these models more transparent. The goal of this paper is to clarify the nature of interpretability by focussing on the other end of the "interpretability spectrum". The reasons why some models, linear models and decision trees, are highly interpretable will be examined, and also how more general models, MARS and GAM, retain some degree of interpretability. It is found that while there is heterogeneity in how we gain interpretability, what interpretability is in particular cases can be explicated in a clear manner.
机器学习模型的可解释性很重要,但目前尚不清楚它具体指的是什么。到目前为止,大多数哲学家都讨论了诸如神经网络等黑箱模型缺乏可解释性的问题,以及诸如可解释人工智能等旨在使这些模型更具透明度的方法。本文的目标是通过关注“可解释性频谱”的另一端来阐明可解释性的本质。我们将研究一些模型(线性模型和决策树)具有高度可解释性的原因,以及更通用的模型(多元自适应回归样条和广义相加模型)如何保持一定程度的可解释性。研究发现,虽然我们获得可解释性的方式存在异质性,但在特定情况下可解释性具体是什么可以以清晰的方式阐述。