Suppr超能文献

用于脉冲神经网络的协变时空感受野

Covariant spatio-temporal receptive fields for spiking neural networks.

作者信息

Pedersen J E, Conradt J, Lindeberg T

机构信息

Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden.

出版信息

Nat Commun. 2025 Sep 5;16(1):8231. doi: 10.1038/s41467-025-63493-0.

Abstract

Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations. Here, we present a principled computational model for neuromorphic systems in terms of spatio-temporal receptive fields, based on affine Gaussian kernels over space and leaky-integrator and leaky integrate-and-fire models over time. Our theory is provably covariant to spatial affine and temporal scaling transformations, with close similarities to visual processing in mammalian brains. We use these spatio-temporal receptive fields as a prior in an event-based vision task, and show that this improves the training of spiking networks, which is otherwise known to be problematic for event-based vision. This work combines efforts within scale-space theory and computational neuroscience to identify theoretically well-founded ways to process spatio-temporal signals in neuromorphic systems. Our contributions are immediately relevant for signal processing and event-based vision, and can be extended to other processing tasks over space and time, such as memory and control.

摘要

生物神经系统是实现更快、更廉价且更节能的计算机的重要灵感来源。神经形态学科将大脑视为一个共同进化的系统,同时对硬件及其上运行的算法进行优化。将计算引入物理基板可显著提高效率,但目前我们缺乏指导高效实现的理论。在此,我们基于空间上的仿射高斯核以及时间上的泄漏积分器和泄漏积分发放模型,提出了一种关于神经形态系统的基于时空感受野的原理性计算模型。我们的理论被证明对于空间仿射和时间缩放变换是协变的,与哺乳动物大脑中的视觉处理有密切相似之处。我们将这些时空感受野用作基于事件的视觉任务中的先验信息,并表明这改进了脉冲神经网络的训练,而脉冲神经网络在基于事件的视觉中训练通常存在问题。这项工作结合了尺度空间理论和计算神经科学的成果,以确定在神经形态系统中处理时空信号的理论基础扎实的方法。我们的贡献与信号处理和基于事件的视觉直接相关,并且可以扩展到其他时空处理任务,如记忆和控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验