Suppr超能文献

解释人类随机生成的缺陷,即具有动量的局部采样。

Explaining the flaws in human random generation as local sampling with momentum.

机构信息

Department of Psychology, University of Warwick, Coventry, United Kingdom.

Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.

出版信息

PLoS Comput Biol. 2024 Jan 5;20(1):e1011739. doi: 10.1371/journal.pcbi.1011739. eCollection 2024 Jan.

Abstract

In many tasks, human behavior is far noisier than is optimal. Yet when asked to behave randomly, people are typically too predictable. We argue that these apparently contrasting observations have the same origin: the operation of a general-purpose local sampling algorithm for probabilistic inference. This account makes distinctive predictions regarding random sequence generation, not predicted by previous accounts-which suggests that randomness is produced by inhibition of habitual behavior, striving for unpredictability. We verify these predictions in two experiments: people show the same deviations from randomness when randomly generating from non-uniform or recently-learned distributions. In addition, our data show a novel signature behavior, that people's sequences have too few changes of trajectory, which argues against the specific local sampling algorithms that have been proposed in past work with other tasks. Using computational modeling, we show that local sampling where direction is maintained across trials best explains our data, which suggests it may be used in other tasks too. While local sampling has previously explained why people are unpredictable in standard cognitive tasks, here it also explains why human random sequences are not unpredictable enough.

摘要

在许多任务中,人类行为的噪音远大于最佳状态。然而,当被要求随机行为时,人们通常又过于可预测。我们认为,这些看似矛盾的观察结果源于相同的原因:一种用于概率推理的通用局部采样算法的运作。这一解释对随机序列生成有独特的预测,而之前的解释并没有预测到这一点——这表明随机性是通过抑制习惯性行为、追求不可预测性产生的。我们在两个实验中验证了这些预测:当人们从非均匀或最近学习的分布中随机生成时,他们的表现与随机生成时一样,都存在偏离随机性的情况。此外,我们的数据还显示了一种新的特征行为,即人们的序列变化轨迹太少,这与过去在其他任务中提出的特定局部采样算法相悖。通过计算建模,我们发现,在整个试验中保持方向的局部采样最能解释我们的数据,这表明它也可以用于其他任务。虽然局部采样之前已经解释了为什么人们在标准认知任务中不可预测,但在这里它也解释了为什么人类的随机序列不够不可预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a540/10796055/45ce253383f9/pcbi.1011739.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验