Suppr超能文献

使用 Lempel-Ziv 复杂度刻画人类在竞争和非竞争环境下的随机序列生成。

Characterizing human random-sequence generation in competitive and non-competitive environments using Lempel-Ziv complexity.

机构信息

Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA.

Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Irvine, CA, USA.

出版信息

Sci Rep. 2021 Oct 19;11(1):20662. doi: 10.1038/s41598-021-99967-6.

Abstract

The human ability for random-sequence generation (RSG) is limited but improves in a competitive game environment with feedback. However, it remains unclear how random people can be during games and whether RSG during games can improve when explicitly informing people that they must be as random as possible to win the game. Nor is it known whether any such improvement in RSG transfers outside the game environment. To investigate this, we designed a pre/post intervention paradigm around a Rock-Paper-Scissors game followed by a questionnaire. During the game, we manipulated participants' level of awareness of the computer's strategy; they were either (a) not informed of the computer's algorithm or (b) explicitly informed that the computer used patterns in their choice history against them, so they must be maximally random to win. Using a compressibility metric of randomness, our results demonstrate that human RSG can reach levels statistically indistinguishable from computer pseudo-random generators in a competitive-game setting. However, our results also suggest that human RSG cannot be further improved by explicitly informing participants that they need to be random to win. In addition, the higher RSG in the game setting does not transfer outside the game environment. Furthermore, we found that the underrepresentation of long repetitions of the same entry in the series explains up to 29% of the variability in human RSG, and we discuss what might make up the variance left unexplained.

摘要

人类的随机序列生成(RSG)能力是有限的,但在具有反馈的竞争游戏环境中会有所提高。然而,目前尚不清楚人们在游戏中能有多随机,以及当明确告知人们为了赢得游戏必须尽可能随机时,游戏中的 RSG 是否可以提高。也不知道这种 RSG 在游戏环境之外的任何改进是否会转移。为了研究这个问题,我们围绕石头剪刀布游戏设计了一个预/后干预范式,并附有一份问卷。在游戏过程中,我们操纵参与者对计算机策略的意识水平;他们要么(a)不了解计算机的算法,要么(b)明确被告知计算机根据他们的选择历史使用模式来对付他们,所以他们必须最大程度地随机才能获胜。使用随机性的压缩度量,我们的结果表明,在竞争游戏环境中,人类的 RSG 可以达到与计算机伪随机生成器在统计学上无法区分的水平。然而,我们的结果也表明,通过明确告知参与者他们需要随机才能获胜,人类的 RSG 无法进一步提高。此外,游戏环境中的更高 RSG 不会转移到游戏环境之外。此外,我们发现,序列中同一条目重复的次数较少可以解释人类 RSG 变化的 29%,我们还讨论了可能构成剩余方差的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2294/8526708/d82e6cc937ce/41598_2021_99967_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验