Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.
Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), Fürstengraben 1, 07743 Jena, Germany.
Bioelectrochemistry. 2024 Jun;157:108636. doi: 10.1016/j.bioelechem.2023.108636. Epub 2023 Dec 25.
Pseudomonas aeruginosa phenazines contribute to survival under microaerobic and anaerobic conditions by extracellular electron discharge to regulate cellular redox balances. This electron discharge is also attractive to be used for bioelectrochemical applications. However, elements of the respiratory pathways that interact with phenazines are not well understood. Five terminal oxidases are involved in the aerobic electron transport chain (ETC) of Pseudomonas putida and P. aeruginosa. The latter bacterium also includes four reductases that allow for denitrification. Here, we explored if phenazine-1-carboxylic acid interacts with those elements to enhance anodic electron discharge and drive bacterial growth in oxygen-limited conditions. Bioelectrochemical evaluations of terminal oxidase-deficient mutants of both Pseudomonas strains and P. aeruginosa with stimulated denitrification pathways indicated no direct beneficial interaction of phenazines with ETC elements for extracellular electron discharge. However, the single usage of the Cbb3-2 oxidase increased phenazine production, electron discharge, and cell growth. Assays with purified periplasmic cytochromes NirM and NirS indicated that pyocyanin acts as their electron donor. We conclude that phenazines play an important role in electron transfer to, between, and from terminal oxidases under oxygen-limiting conditions and their modulation might enhance EET. However, the phenazine-anode interaction cannot replace oxygen respiration to deliver energy for biomass formation.
铜绿假单胞菌中的苯醌通过细胞外电子排放来调节细胞氧化还原平衡,从而有助于在微需氧和厌氧条件下存活。这种电子排放也很吸引人,可用于生物电化学应用。然而,与苯醌相互作用的呼吸途径元素还没有被很好地理解。5 种末端氧化酶参与铜绿假单胞菌和铜绿假单胞菌的需氧电子传递链 (ETC)。后者还包括允许反硝化的 4 种还原酶。在这里,我们探讨了苯醌-1-羧酸是否与这些元素相互作用,以增强阳极电子排放并在氧气有限的条件下驱动细菌生长。对这两种假单胞菌菌株和具有刺激反硝化途径的铜绿假单胞菌的末端氧化酶缺陷突变体进行生物电化学评估表明,苯醌与 ETC 元素之间没有直接的有益相互作用,用于细胞外电子排放。然而,单独使用 Cbb3-2 氧化酶会增加苯醌的产生、电子排放和细胞生长。用纯化的周质细胞色素 NirM 和 NirS 进行的测定表明,绿脓菌素是它们的电子供体。我们得出的结论是,在氧气限制条件下,苯醌在末端氧化酶之间和之间的电子转移中起着重要作用,它们的调节可能增强 EET。然而,苯醌-阳极相互作用不能替代氧气呼吸,为生物量形成提供能量。