Suppr超能文献

氧化还原活性代谢物的生物能量抑制促进了. 的抗生素耐药性。

Bioenergetic suppression by redox-active metabolites promotes antibiotic tolerance in .

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2406555121. doi: 10.1073/pnas.2406555121. Epub 2024 Nov 6.

Abstract

The proton-motive force (PMF), consisting of a pH gradient and a membrane potential (ΔΨ) underpins many processes essential to bacterial growth and/or survival. Yet bacteria often enter a bioenergetically diminished state characterized by a low PMF. Consequently, they have increased tolerance for diverse stressors, including clinical antibiotics. Despite the ubiquity of low metabolic rates in the environment, the extent to which bacteria have agency over entry into such a low-bioenergetic state has received relatively little attention. Here, we tested the hypothesis that production of redox-active metabolites (RAMs) could drive such a physiological transition. is an opportunistic pathogen that produces phenazines, model RAMs that are highly toxic in the presence of molecular oxygen (O). Under oxic conditions, the phenazines pyocyanin and phenazine-1-carboximide, as well as toxoflavin-a RAM produced by species-suppress the ΔΨ in distinct ways across distributions of single cells, reduce the efficiency of proton pumping, and lower cellular adenosine-triphosphate (ATP) levels. In planktonic culture, the degree and rate by which each RAM lowers the ΔΨ correlates with the protection it confers against antibiotics that strongly impact cellular energy flux. This bioenergetic suppression requires the RAM's presence and corresponds to its cellular reduction rate and abiotic oxidation rate by O; it can be reversed by increasing the ΔΨ with nigericin. RAMs similarly impact the bioenergetic state of cells in (hyp)oxic biofilm aggregates. Collectively, these findings demonstrate that bacteria can suppress their bioenergetic state by the production of endogenous toxins in a manner that bolsters stress resilience.

摘要

质子动力势(PMF)由 pH 梯度和膜电位(ΔΨ)组成,是许多对细菌生长和/或存活至关重要的过程的基础。然而,细菌经常进入生物能量降低的状态,其特征是 PMF 低。因此,它们对包括临床抗生素在内的各种应激源的耐受性增加。尽管环境中代谢率普遍较低,但细菌对进入这种低生物能量状态的控制程度相对较少受到关注。在这里,我们测试了这样一个假设,即氧化还原活性代谢物(RAM)的产生可以驱动这种生理转变。 是一种机会性病原体,产生吩嗪,是一种在分子氧(O)存在下高度有毒的模型 RAM。在有氧条件下,吩嗪绿脓菌素和吩嗪-1-羧酰胺以及 toxoflavin-一种由 物种产生的 RAM-以不同的方式抑制跨单细胞分布的 ΔΨ,降低质子泵的效率,并降低细胞三磷酸腺苷(ATP)水平。在浮游培养物中,每种 RAM 降低 ΔΨ 的程度和速率与其对抗强烈影响细胞能量通量的抗生素的保护作用相关。这种生物能量抑制需要 RAM 的存在,并与其细胞还原率和 O 非生物氧化率相对应;它可以通过用 Nigericin 增加 ΔΨ 来逆转。RAM 对缺氧生物膜聚集体中细胞的生物能量状态也有类似的影响。总的来说,这些发现表明,细菌可以通过产生内源性毒素来抑制其生物能量状态,从而增强其应激恢复能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/569c/11573671/c0f489ec4446/pnas.2406555121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验