Suppr超能文献

基于英语音素的想象语音脑机接口与低成本脑电图的评估。

Evaluation of an English language phoneme-based imagined speech brain computer interface with low-cost electroencephalography.

作者信息

LaRocco John, Tahmina Qudsia, Lecian Sam, Moore Jason, Helbig Cole, Gupta Surya

机构信息

Wexner Medical Center, The Ohio State University, Columbus, OH, United States.

Department of Electrical Engineering, The Ohio State University, Columbus, OH, United States.

出版信息

Front Neuroinform. 2023 Dec 18;17:1306277. doi: 10.3389/fninf.2023.1306277. eCollection 2023.

Abstract

INTRODUCTION

Paralyzed and physically impaired patients face communication difficulties, even when they are mentally coherent and aware. Electroencephalographic (EEG) brain-computer interfaces (BCIs) offer a potential communication method for these people without invasive surgery or physical device controls.

METHODS

Although virtual keyboard protocols are well documented in EEG BCI paradigms, these implementations are visually taxing and fatiguing. All English words combine 44 unique phonemes, each corresponding to a unique EEG pattern. In this study, a complete phoneme-based imagined speech EEG BCI was developed and tested on 16 subjects.

RESULTS

Using open-source hardware and software, machine learning models, such as k-nearest neighbor (KNN), reliably achieved a mean accuracy of 97 ± 0.001%, a mean F1 of 0.55 ± 0.01, and a mean AUC-ROC of 0.68 ± 0.002 in a modified one-versus-rest configuration, resulting in an information transfer rate of 304.15 bits per minute. In line with prior literature, the distinguishing feature between phonemes was the gamma power on channels F3 and F7.

DISCUSSION

However, adjustments to feature selection, trial window length, and classifier algorithms may improve performance. In summary, these are iterative changes to a viable method directly deployable in current, commercially available systems and software. The development of an intuitive phoneme-based EEG BCI with open-source hardware and software demonstrates the potential ease with which the technology could be deployed in real-world applications.

摘要

引言

瘫痪和身体有障碍的患者面临沟通困难,即使他们思维清晰且有意识。脑电图(EEG)脑机接口(BCI)为这些人提供了一种无需进行侵入性手术或物理设备控制的潜在沟通方法。

方法

尽管虚拟键盘协议在EEG BCI范式中有详细记录,但这些实现方式对视觉有较高要求且令人疲劳。所有英语单词由44个独特的音素组合而成,每个音素对应一种独特的EEG模式。在本研究中,开发了一种基于完整音素的想象语音EEG BCI,并在16名受试者身上进行了测试。

结果

使用开源硬件和软件,在改进的一对多配置中,诸如k近邻(KNN)等机器学习模型可靠地实现了平均准确率为97±0.001%,平均F1值为0.55±0.01,平均AUC-ROC为0.68±0.002,信息传输速率为每分钟304.15比特。与先前文献一致,音素之间的显著特征是F3和F7通道上的伽马功率。

讨论

然而,对特征选择、试验窗口长度和分类器算法进行调整可能会提高性能。总之,这些是对一种可行方法进行的迭代更改,可直接部署在当前的商业可用系统和软件中。基于开源硬件和软件开发直观的基于音素的EEG BCI,证明了该技术在实际应用中易于部署的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/205d/10773705/20637a641ae3/fninf-17-1306277-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验