Suppr超能文献

不确定条件下电动汽车退役电池回收网络设计的随机规划方法

A stochastic programming approach for EOL electric vehicle batteries recovery network design under uncertain conditions.

作者信息

Yan Wei, Wang Xiao, Liu Ying, Zhang Xu-Mei, Jiang Zhi-Gang, Huang Lin

机构信息

School of Automotive and Traffic Engineering, Wuhan University of Science and Technology, Hubei, 430081, China.

Academy of Green Manufacturing Engineering, Wuhan University of Science and Technology, Hubei, 430081, China.

出版信息

Sci Rep. 2024 Jan 9;14(1):876. doi: 10.1038/s41598-024-51169-6.

Abstract

With the development of the electric vehicle industry, the number of power batteries has increased dramatically. Establishing a recycling EOL (end-of-life) battery network for secondary use is an effective way to solve resource shortage and environmental pollution. However, existing networks are challenging due to the high uncertainty of EOL batteries, e.g., quantity and quality, resulting in a low recycling rate of the recovery network. To fill this gap, this paper proposes a stochastic programming approach for recovery network design under uncertain conditions of EOL batteries. Firstly, a multi-objective model for battery recovery network is established, considering carbon emissions and economic benefits. Secondly, a stochastic programming approach is proposed to clarify the model. Subsequently, the genetic algorithm is employed to solve the proposed model. Finally, a recovery network case of Region T is given to verify the credibility and superiority of the proposed method. The results demonstrate that the proposed model reduces carbon emissions by 20 metric tons and increases overall economic benefits by 10 million yuan in Region T compared to the deterministic model. Furthermore, the two portions affecting the optimization results are also discussed to provide a reference for reducing carbon emissions and improving economic efficiency in recycling networks.

摘要

随着电动汽车行业的发展,动力电池数量急剧增加。建立用于二次利用的回收报废电池网络是解决资源短缺和环境污染的有效途径。然而,由于报废电池的高度不确定性,如数量和质量,现有网络面临挑战,导致回收网络的回收率较低。为填补这一空白,本文提出一种在报废电池不确定条件下进行回收网络设计的随机规划方法。首先,建立了考虑碳排放和经济效益的电池回收网络多目标模型。其次,提出一种随机规划方法来求解该模型。随后,采用遗传算法求解所提出的模型。最后,给出了T地区的回收网络案例,以验证所提方法的可信度和优越性。结果表明,与确定性模型相比,所提模型在T地区减少了20公吨的碳排放,增加了1000万元的总体经济效益。此外,还讨论了影响优化结果的两个部分,为降低回收网络中的碳排放和提高经济效率提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f5/10776577/0db7b916a6ec/41598_2024_51169_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验