Suppr超能文献

在一项体模研究中对用于肺结节分割的传统、半自动和自动容积测量工具的实验性检验。

Experimental Examination of Conventional, Semi-Automatic, and Automatic Volumetry Tools for Segmentation of Pulmonary Nodules in a Phantom Study.

作者信息

Hlouschek Julian, König Britta, Bos Denise, Santiago Alina, Zensen Sebastian, Haubold Johannes, Pöttgen Christoph, Herz Andreas, Opitz Marcel, Wetter Axel, Guberina Maja, Stuschke Martin, Zylka Waldemar, Kühl Hilmar, Guberina Nika

机构信息

Department of Radiotherapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany.

Department of Radiology, University Hospital Muenster (UKM), Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Muenster, Germany.

出版信息

Diagnostics (Basel). 2023 Dec 22;14(1):28. doi: 10.3390/diagnostics14010028.

Abstract

The aim of this study is to examine the precision of semi-automatic, conventional and automatic volumetry tools for pulmonary nodules in chest CT with phantom N1 LUNGMAN. The phantom is a life-size anatomical chest model with pulmonary nodules representing solid and subsolid metastases. Gross tumor volumes (GTVs) were contoured using various approaches: manually (0); as a means of semi-automated, conventional contouring with (I) adaptive-brush function; (II) flood-fill function; and (III) image-thresholding function. Furthermore, a deep-learning algorithm for automatic contouring was applied (IV). An intermodality comparison of the above-mentioned strategies for contouring GTVs was performed. For the mean GTV (standard deviation (SD)), the interquartile range (IQR)) was 0.68 mL (0.33; 0.34-1.1). GTV segmentation was distributed as follows: (I) 0.61 mL (0.27; 0.36-0.92); (II) 0.41 mL (0.28; 0.23-0.63); (III) 0.65 mL (0.35; 0.32-0.90); and (IV) 0.61 mL (0.29; 0.33-0.95). GTV was found to be significantly correlated with GTVs (I) < 0.001, r = 0.989 (III) = 0.001, r = 0.916, and (IV) < 0.001, r = 0.986, but not with (II) = 0.091, r = 0.595. The Sørensen-Dice indices for the semi-automatic tools were 0.74 (I), 0.57 (II) and 0.71 (III). For the semi-automatic, conventional segmentation tools evaluated, the adaptive-brush function (I) performed closest to the reference standard (0). The automatic deep learning tool (IV) showed high performance for auto-segmentation and was close to the reference standard. For high precision radiation therapy, visual control, and, where necessary, manual correction, are mandatory for all evaluated tools.

摘要

本研究的目的是使用幻影N1 LUNGMAN检测胸部CT中肺结节的半自动、传统和自动容积测量工具的精度。该幻影是一个真人大小的胸部解剖模型,带有代表实性和亚实性转移灶的肺结节。使用各种方法勾勒大体肿瘤体积(GTV):手动(0);作为半自动、传统轮廓勾勒的方法,使用(I)自适应画笔功能;(II)泛洪填充功能;以及(III)图像阈值功能。此外,应用了一种用于自动轮廓勾勒的深度学习算法(IV)。对上述勾勒GTV的策略进行了模态间比较。对于平均GTV(标准差(SD)),四分位间距(IQR)为0.68 mL(0.33;0.34 - 1.1)。GTV分割分布如下:(I)0.61 mL(0.27;0.36 - 0.92);(II)0.41 mL(0.28;0.23 - 0.63);(III)0.65 mL(0.35;0.32 - 0.90);以及(IV)0.61 mL(0.29;0.33 - 0.95)。发现GTV与GTV显著相关(I)<0.001,r = 0.989;(III)= 0.001,r = 0.916;以及(IV)<0.001,r = 0.986,但与(II)= 0.091,r = 0.595不相关。半自动工具的索伦森 - 戴斯指数分别为0.74(I)、0.57(II)和0.71(III)。对于所评估的半自动、传统分割工具,自适应画笔功能(I)的表现最接近参考标准(0)。自动深度学习工具(IV)在自动分割方面表现出高性能,并且接近参考标准。对于高精度放射治疗,所有评估工具都必须进行视觉控制,并在必要时进行手动校正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec8f/10804383/3e07bc6b055c/diagnostics-14-00028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验