低频范围内逆磁电效应的建模
Modeling the Converse Magnetoelectric Effect in the Low-Frequency Range.
作者信息
Bichurin Mirza, Sokolov Oleg, Ivanov Sergey, Leontiev Viktor, Lobekin Vyacheslav, Semenov Gennady, Wang Yaojin
机构信息
Yaroslav-the-Wise Novgorod State University, 173003 Velikiy Novgorod, Russia.
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
出版信息
Sensors (Basel). 2023 Dec 27;24(1):151. doi: 10.3390/s24010151.
This article is devoted to the theory of the converse magnetoelectric (CME) effect for the longitudinal, bending, longitudinal-shear, and torsional resonance modes and its quasi-static regime. In contrast to the direct ME effect (DME), these issues have not been studied in sufficient detail in the literature. However, in a number of cases, in particular in the study of low-frequency ME antennas, the results obtained are of interest. Detailed calculations with examples were carried out for the longitudinal mode on the symmetric and asymmetric structures based on Metglas/PZT (LN); the bending mode was considered for the asymmetric free structure and structure with rigidly fixed left-end Metglas/PZT (LN); the longitudinal-shear and torsional modes were investigated for the symmetric and asymmetric free structures based on Metglas/GaAs. For the identification of the torsion mode, it was suggested to perform an experiment on the ME structure based on Metglas/bimorphic LN. All calculation results are presented in the form of graphs for the CME coefficients.
本文致力于研究纵向、弯曲、纵向剪切和扭转共振模式下的逆磁电(CME)效应理论及其准静态状态。与直接磁电效应(DME)不同,这些问题在文献中尚未得到足够详细的研究。然而,在许多情况下,特别是在低频磁电天线的研究中,所获得的结果具有一定的意义。基于Metglas/PZT(LN)对对称和非对称结构的纵向模式进行了详细的实例计算;对非对称自由结构以及左端Metglas/PZT(LN)刚性固定的结构考虑了弯曲模式;基于Metglas/GaAs对对称和非对称自由结构研究了纵向剪切和扭转模式。为了识别扭转模式,建议在基于Metglas/双压电晶片LN的磁电结构上进行实验。所有计算结果均以CME系数的图表形式呈现。
相似文献
Sensors (Basel). 2023-12-27
Materials (Basel). 2023-8-24
Sensors (Basel). 2022-6-25
J Phys Condens Matter. 2022-8-4
Sensors (Basel). 2020-12-13
Sensors (Basel). 2020-9-25
Sensors (Basel). 2017-7-19
IEEE Trans Ultrason Ferroelectr Freq Control. 2011-8
本文引用的文献
J Phys Condens Matter. 2022-8-4
Sensors (Basel). 2022-6-25
Micromachines (Basel). 2022-5-30
Sensors (Basel). 2021-9-17
Materials (Basel). 2021-8-17
Nat Mater. 2019-3
Sensors (Basel). 2017-6-2