Tuan Ta Quoc, Toan Le Van, Pham Vuong-Hung
School of Materials Science and Engineering, Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi 100000, Vietnam.
Laboratory of Biomedical Materials, Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi 100000, Vietnam.
Materials (Basel). 2024 Jul 6;17(13):3347. doi: 10.3390/ma17133347.
This paper reports on the coating of heterostructured TiO nanopores/nanotubes on Ti substrates by anodizing at high voltages to design surfaces for biomedical implants. As the anodized voltage from 50 V to 350 V was applied, the microstructure of the coating shifted from regular TiO nanotubes to heterostructured TiO nanopores/nanotubes. In addition, the dimension of the heterostructured TiO nanopores/nanotubes was a function of voltage. The electrochemical characteristics of TiO nanotubes and heterostructured TiO nanopores/nanotubes were evaluated in simulated body fluid (SBF) solution. The creation of heterostructured TiO nanopores/nanotubes on Ti substrates resulted in a significant increase in BHK cell attachment compared to that of the Ti substrates and the TiO nanotubes.
本文报道了通过在高电压下阳极氧化在钛基底上涂覆异质结构的二氧化钛纳米孔/纳米管,以设计用于生物医学植入物的表面。当施加的阳极氧化电压从50 V增加到350 V时,涂层的微观结构从规则的二氧化钛纳米管转变为异质结构的二氧化钛纳米孔/纳米管。此外,异质结构的二氧化钛纳米孔/纳米管的尺寸是电压的函数。在模拟体液(SBF)溶液中评估了二氧化钛纳米管和异质结构的二氧化钛纳米孔/纳米管的电化学特性。与钛基底和二氧化钛纳米管相比,在钛基底上形成异质结构的二氧化钛纳米孔/纳米管导致BHK细胞附着显著增加。