Suppr超能文献

一种基于心电图的可推广人工智能模型,用于预测10年心力衰竭风险。

A generalizable electrocardiogram-based artificial intelligence model for 10-year heart failure risk prediction.

作者信息

Butler Liam, Karabayir Ibrahim, Kitzman Dalane W, Alonso Alvaro, Tison Geoffrey H, Chen Lin Yee, Chang Patricia P, Clifford Gari, Soliman Elsayed Z, Akbilgic Oguz

机构信息

Epidemiological Cardiology Research Center, Section on Cardiovascular Medicine, Department of Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.

Rollins School of Public Health, Emory University, Atlanta, Georgia.

出版信息

Cardiovasc Digit Health J. 2023 Nov 8;4(6):183-190. doi: 10.1016/j.cvdhj.2023.11.003. eCollection 2023 Dec.

Abstract

BACKGROUND

Heart failure (HF) is a progressive condition with high global incidence. HF has two main subtypes: HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). There is an inherent need for simple yet effective electrocardiogram (ECG)-based artificial intelligence (AI; ECG-AI) models that can predict HF risk early to allow for risk modification.

OBJECTIVE

The main objectives were to validate HF risk prediction models using Multi-Ethnic Study of Atherosclerosis (MESA) data and assess performance on HFpEF and HFrEF classification.

METHODS

There were six models in comparision derived using ARIC data. 1) The ECG-AI model predicting HF risk was developed using raw 12-lead ECGs with a convolutional neural network. The clinical models from 2) ARIC (ARIC-HF) and 3) Framingham Heart Study (FHS-HF) used 9 and 8 variables, respectively. 4) Cox proportional hazards (CPH) model developed using the clinical risk factors in ARIC-HF or FHS-HF. 5) CPH model using the outcome of ECG-AI and the clinical risk factors used in CPH model (ECG-AI-Cox) and 6) A Light Gradient Boosting Machine model using 288 ECG Characteristics (ECG-Chars). All the models were validated on MESA. The performances of these models were evaluated using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test.

RESULTS

ECG-AI, ECG-Chars, and ECG-AI-Cox resulted in validation AUCs of 0.77, 0.73, and 0.84, respectively. ARIC-HF and FHS-HF yielded AUCs of 0.76 and 0.74, respectively, and CPH resulted in AUC = 0.78. ECG-AI-Cox outperformed all other models. ECG-AI-Cox provided an AUC of 0.85 for HFrEF and 0.83 for HFpEF.

CONCLUSION

ECG-AI using ECGs provides better-validated predictions when compared to HF risk calculators, and the ECG feature model and also works well with HFpEF and HFrEF classification.

摘要

背景

心力衰竭(HF)是一种全球发病率较高的进行性疾病。HF主要有两种亚型:射血分数保留的心力衰竭(HFpEF)和射血分数降低的心力衰竭(HFrEF)。迫切需要简单而有效的基于心电图(ECG)的人工智能(AI;ECG-AI)模型,以便能够早期预测HF风险,从而进行风险调整。

目的

主要目标是使用动脉粥样硬化多民族研究(MESA)数据验证HF风险预测模型,并评估其在HFpEF和HFrEF分类方面的性能。

方法

使用ARIC数据衍生出六个用于比较的模型。1) 使用原始12导联心电图和卷积神经网络开发预测HF风险的ECG-AI模型。2) ARIC(ARIC-HF)和3) 弗明汉心脏研究(FHS-HF)的临床模型分别使用了9个和8个变量。4) 使用ARIC-HF或FHS-HF中的临床风险因素开发的Cox比例风险(CPH)模型。5) 使用ECG-AI的结果和CPH模型中使用的临床风险因素的CPH模型(ECG-AI-Cox),以及6) 使用288个ECG特征(ECG-Chars)的Light梯度提升机模型。所有模型均在MESA上进行验证。使用受试者操作特征曲线下面积(AUC)评估这些模型的性能,并使用德龙检验进行比较。

结果

ECG-AI、ECG-Chars和ECG-AI-Cox的验证AUC分别为0.77、0.73和0.84。ARIC-HF和FHS-HF的AUC分别为0.76和0.74,CPH的AUC = 0.78。ECG-AI-Cox的表现优于所有其他模型。ECG-AI-Cox对HFrEF的AUC为0.85,对HFpEF的AUC为0.83。

结论

与HF风险计算器相比,使用心电图的ECG-AI提供了经过更好验证的预测,并且该ECG特征模型在HFpEF和HFrEF分类方面也表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a0e/10787146/464e9e97b401/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验