Butler Liam, Karabayir Ibrahim, Kitzman Dalane W, Alonso Alvaro, Tison Geoffrey H, Chen Lin Yee, Chang Patricia P, Clifford Gari, Soliman Elsayed Z, Akbilgic Oguz
Epidemiological Cardiology Research Center, Section on Cardiovascular Medicine, Department of Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
Rollins School of Public Health, Emory University, Atlanta, Georgia.
Cardiovasc Digit Health J. 2023 Nov 8;4(6):183-190. doi: 10.1016/j.cvdhj.2023.11.003. eCollection 2023 Dec.
Heart failure (HF) is a progressive condition with high global incidence. HF has two main subtypes: HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). There is an inherent need for simple yet effective electrocardiogram (ECG)-based artificial intelligence (AI; ECG-AI) models that can predict HF risk early to allow for risk modification.
The main objectives were to validate HF risk prediction models using Multi-Ethnic Study of Atherosclerosis (MESA) data and assess performance on HFpEF and HFrEF classification.
There were six models in comparision derived using ARIC data. 1) The ECG-AI model predicting HF risk was developed using raw 12-lead ECGs with a convolutional neural network. The clinical models from 2) ARIC (ARIC-HF) and 3) Framingham Heart Study (FHS-HF) used 9 and 8 variables, respectively. 4) Cox proportional hazards (CPH) model developed using the clinical risk factors in ARIC-HF or FHS-HF. 5) CPH model using the outcome of ECG-AI and the clinical risk factors used in CPH model (ECG-AI-Cox) and 6) A Light Gradient Boosting Machine model using 288 ECG Characteristics (ECG-Chars). All the models were validated on MESA. The performances of these models were evaluated using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test.
ECG-AI, ECG-Chars, and ECG-AI-Cox resulted in validation AUCs of 0.77, 0.73, and 0.84, respectively. ARIC-HF and FHS-HF yielded AUCs of 0.76 and 0.74, respectively, and CPH resulted in AUC = 0.78. ECG-AI-Cox outperformed all other models. ECG-AI-Cox provided an AUC of 0.85 for HFrEF and 0.83 for HFpEF.
ECG-AI using ECGs provides better-validated predictions when compared to HF risk calculators, and the ECG feature model and also works well with HFpEF and HFrEF classification.
心力衰竭(HF)是一种全球发病率较高的进行性疾病。HF主要有两种亚型:射血分数保留的心力衰竭(HFpEF)和射血分数降低的心力衰竭(HFrEF)。迫切需要简单而有效的基于心电图(ECG)的人工智能(AI;ECG-AI)模型,以便能够早期预测HF风险,从而进行风险调整。
主要目标是使用动脉粥样硬化多民族研究(MESA)数据验证HF风险预测模型,并评估其在HFpEF和HFrEF分类方面的性能。
使用ARIC数据衍生出六个用于比较的模型。1) 使用原始12导联心电图和卷积神经网络开发预测HF风险的ECG-AI模型。2) ARIC(ARIC-HF)和3) 弗明汉心脏研究(FHS-HF)的临床模型分别使用了9个和8个变量。4) 使用ARIC-HF或FHS-HF中的临床风险因素开发的Cox比例风险(CPH)模型。5) 使用ECG-AI的结果和CPH模型中使用的临床风险因素的CPH模型(ECG-AI-Cox),以及6) 使用288个ECG特征(ECG-Chars)的Light梯度提升机模型。所有模型均在MESA上进行验证。使用受试者操作特征曲线下面积(AUC)评估这些模型的性能,并使用德龙检验进行比较。
ECG-AI、ECG-Chars和ECG-AI-Cox的验证AUC分别为0.77、0.73和0.84。ARIC-HF和FHS-HF的AUC分别为0.76和0.74,CPH的AUC = 0.78。ECG-AI-Cox的表现优于所有其他模型。ECG-AI-Cox对HFrEF的AUC为0.85,对HFpEF的AUC为0.83。
与HF风险计算器相比,使用心电图的ECG-AI提供了经过更好验证的预测,并且该ECG特征模型在HFpEF和HFrEF分类方面也表现良好。