Butler Liam, Gunturkun Fatma, Chinthala Lokesh, Karabayir Ibrahim, Tootooni Mohammad S, Bakir-Batu Berna, Celik Turgay, Akbilgic Oguz, Davis Robert L
Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
Quantitative Sciences Unit, Stanford School of Medicine, Stanford University, Stanford, CA, United States.
Front Cardiovasc Med. 2024 Mar 4;11:1360238. doi: 10.3389/fcvm.2024.1360238. eCollection 2024.
More than 76,000 women die yearly from preeclampsia and hypertensive disorders of pregnancy. Early diagnosis and management of preeclampsia can improve outcomes for both mother and baby. In this study, we developed artificial intelligence models to detect and predict preeclampsia from electrocardiograms (ECGs) in point-of-care settings.
Ten-second 12-lead ECG data was obtained from two large health care settings: University of Tennessee Health Science Center (UTHSC) and Atrium Health Wake Forest Baptist (AHWFB). UTHSC data was split into 80% training and 20% holdout data. The model used a modified ResNet convolutional neural network, taking one-dimensional raw ECG signals comprising 12 channels as an input, to predict risk of preeclampsia. Sub-analyses were performed to assess the predictive accuracy for preeclampsia prediction within 30, 60, or 90 days before diagnosis.
The UTHSC cohort included 904 ECGs from 759 females (78.8% African American) with a mean ± sd age of 27.3 ± 5.0 years. The AHWFB cohort included 817 ECGs from 141 females (45.4 African American) with a mean ± sd age of 27.4 ± 5.9 years. The cross-validated ECG-AI model yielded an AUC (95% CI) of 0.85 (0.77-0.93) on UTHSC holdout data, and an AUC (95% CI) of 0.81 (0.77-0.84) on AHWFB data. The sub-analysis of different time windows before preeclampsia prediction resulted in AUCs (95% CI) of 0.92 (0.84-1.00), 0.89 (0.81-0.98) and 0.90 (0.81-0.98) when tested on ECGs 30 days, 60 days and 90 days, respectively, before diagnosis. When assessed on early onset preeclampsia (preeclampsia diagnosed at <34 weeks of pregnancy), the model's AUC (95% CI) was 0.98 (0.89-1.00).
We conclude that preeclampsia can be identified with high accuracy via application of AI models to ECG data.
每年有超过76000名女性死于先兆子痫和妊娠高血压疾病。先兆子痫的早期诊断和管理可以改善母婴结局。在本研究中,我们开发了人工智能模型,用于在即时医疗环境中通过心电图(ECG)检测和预测先兆子痫。
从两个大型医疗保健机构获取了10秒的12导联心电图数据:田纳西大学健康科学中心(UTHSC)和韦克福里斯特浸信会医疗中心(AHWFB)。UTHSC的数据被分为80%的训练数据和20%的保留数据。该模型使用了改进的ResNet卷积神经网络,将包含12个通道的一维原始心电图信号作为输入,以预测先兆子痫的风险。进行了亚分析,以评估在诊断前30、60或90天内先兆子痫预测的预测准确性。
UTHSC队列包括来自759名女性(78.8%为非裔美国人)的904份心电图,平均年龄±标准差为27.3±5.0岁。AHWFB队列包括来自141名女性(45.4%为非裔美国人)的817份心电图,平均年龄±标准差为27.4±5.9岁。交叉验证的心电图人工智能模型在UTHSC保留数据上的AUC(95%CI)为0.85(0.77-0.93),在AHWFB数据上的AUC(95%CI)为0.81(0.77-0.84)。在先兆子痫预测前不同时间窗口的亚分析中,当在诊断前30天(AUC,95%CI:0.92,0.84-1.00)、60天(AUC,95%CI:0.89,0.81-0.98)和90天(AUC,95%CI:0.90,0.81-0.98)的心电图上进行测试时,得到了相应的AUC值。当对早发型先兆子痫(妊娠<34周时诊断为先兆子痫)进行评估时,该模型的AUC(95%CI)为0.98(0.89-1.00)。
我们得出结论,通过将人工智能模型应用于心电图数据,可以高精度地识别先兆子痫。