Dhingra Lovedeep S, Aminorroaya Arya, Sangha Veer, Pedroso Aline F, Asselbergs Folkert W, Brant Luisa C C, Barreto Sandhi M, Ribeiro Antonio Luiz P, Krumholz Harlan M, Oikonomou Evangelos K, Khera Rohan
Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
Cardiovascular Data Science (CarDS) Lab, Yale School of Medicine, New Haven, CT 06510, USA.
Eur Heart J. 2025 Mar 13;46(11):1044-1053. doi: 10.1093/eurheartj/ehae914.
Current heart failure (HF) risk stratification strategies require comprehensive clinical evaluation. In this study, artificial intelligence (AI) applied to electrocardiogram (ECG) images was examined as a strategy to predict HF risk.
Across multinational cohorts in the Yale New Haven Health System (YNHHS), UK Biobank (UKB), and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), individuals without baseline HF were followed for the first HF hospitalization. An AI-ECG model that defines cross-sectional left ventricular systolic dysfunction from 12-lead ECG images was used, and its association with incident HF was evaluated. Discrimination was assessed using Harrell's C-statistic. Pooled cohort equations to prevent HF (PCP-HF) were used as a comparator.
Among 231 285 YNHHS patients, 4472 had primary HF hospitalizations over 4.5 years (inter-quartile range 2.5-6.6). In UKB and ELSA-Brasil, among 42 141 and 13 454 people, 46 and 31 developed HF over 3.1 (2.1-4.5) and 4.2 (3.7-4.5) years. A positive AI-ECG screen portended a 4- to 24-fold higher risk of new-onset HF [age-, sex-adjusted hazard ratio: YNHHS, 3.88 (95% confidence interval 3.63-4.14); UKB, 12.85 (6.87-24.02); ELSA-Brasil, 23.50 (11.09-49.81)]. The association was consistent after accounting for comorbidities and the competing risk of death. Higher probabilities were associated with progressively higher HF risk. Model discrimination was 0.718 in YNHHS, 0.769 in UKB, and 0.810 in ELSA-Brasil. In YNHHS and ELSA-Brasil, incorporating AI-ECG with PCP-HF yielded a significant improvement in discrimination over PCP-HF alone.
An AI model applied to a single ECG image defined the risk of future HF, representing a digital biomarker for stratifying HF risk.
当前的心力衰竭(HF)风险分层策略需要全面的临床评估。在本研究中,将应用于心电图(ECG)图像的人工智能(AI)作为预测HF风险的一种策略进行了研究。
在耶鲁纽黑文医疗系统(YNHHS)、英国生物银行(UKB)和巴西成人健康纵向研究(ELSA - Brasil)的跨国队列中,对无基线HF的个体进行首次HF住院随访。使用一种从12导联ECG图像定义横断面左心室收缩功能障碍的AI - ECG模型,并评估其与新发HF的关联。使用Harrell's C统计量评估辨别力。将预防HF的合并队列方程(PCP - HF)用作对照。
在231285名YNHHS患者中,4472人在4.5年(四分位间距2.5 - 6.6)内发生了原发性HF住院。在UKB和ELSA - Brasil中,在42141人和13454人中,分别有46人和31人在3.1年(2.1 - 4.5)和4.2年(3.7 - 4.5)内发生了HF。AI - ECG筛查呈阳性预示新发HF风险高4至24倍[年龄、性别调整后的风险比:YNHHS为3.88(95%置信区间3.63 - 4.14);UKB为12.85(6.87 - 24.02);ELSA - Brasil为23.50(11.09 - 49.81)]。在考虑合并症和死亡的竞争风险后,这种关联是一致的。较高的概率与逐渐增加的HF风险相关。YNHHS中的模型辨别力为0.718,UKB中为0.769,ELSA - Brasil中为0.810。在YNHHS和ELSA - Brasil中,将AI - ECG与PCP - HF结合使用比单独使用PCP - HF在辨别力方面有显著改善。
应用于单个ECG图像的AI模型可确定未来HF的风险,代表一种用于分层HF风险的数字生物标志物。