Suppr超能文献

使用累积分布函数(CDF)通过表面增强拉曼光谱(SERS)对抗病毒药物替诺福韦(TFV)进行定量分析。

Quantification of Antiviral Drug Tenofovir (TFV) by Surface-Enhanced Raman Spectroscopy (SERS) Using Cumulative Distribution Functions (CDFs).

作者信息

Butler Marguerite R, Hrncirova Jana, Clark Meredith, Dutta Sucharita, Cooper John B

机构信息

Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States.

Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic.

出版信息

ACS Omega. 2023 Dec 18;9(1):1310-1319. doi: 10.1021/acsomega.3c07641. eCollection 2024 Jan 9.

Abstract

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive spectroscopic technique that generates signal-enhanced fingerprint vibrational spectra of small molecules. However, without rigorous control of SERS substrate active sites, geometry, surface area, or surface functionality, SERS is notoriously irreproducible, complicating the consistent quantitative analysis of small molecules. While evaporatively prepared samples yield significant SERS enhancement resulting in lower detection limits, the distribution of these enhancements along the SERS surface is inherently stochastic. Acquiring spatially resolved SERS spectra of these dried surfaces, we have shown that this enhancement is governed by a power law as a function of analyte concentration. Consequently, by definition, there is no true mean of SERS enhancement, requiring an alternative approach to achieve reproducible quantitative results. In this study, we introduce a new method of analysis of SERS data using a cumulative distribution function (CDF). The antiviral drug tenofovir (TFV) in an aqueous matrix was quantified down to a clinically relevant concentration of 25 ng/mL using hydroxylamine-reduced silver colloids evaporated to dryness. The data presented in this study provide a rationale for the benefits of combining a novel statistical approach using CDFs with simple and inexpensive experimental techniques to increase the precision, accuracy, and analytical sensitivity of aqueous TFV quantification by SERS. TFV calibration curves generated using CDF analysis showed higher analytical sensitivity (in the form of a normalized calibration curve average slope increase of 0.25) compared to traditional SERS intensity calculations. A second aliquot of nanoparticles and analyte dried on the SERS surface followed by CDF analysis showed further analytical sensitivity with a normalized calibration curve slope increase of 0.23 and decreased variation among replicates represented by an average standard deviation decrease of 0.02 with a second aliquot. The quantitative analysis of SERS data using CDFs presented here shows promise to be a reproducible method for quantitative analysis of SERS data, a significant step toward implementing SERS as an analytical method in clinical and industrial settings.

摘要

表面增强拉曼光谱(SERS)是一种超灵敏的光谱技术,可生成小分子的信号增强指纹振动光谱。然而,如果不对SERS基底的活性位点、几何形状、表面积或表面功能进行严格控制,SERS的结果很难再现,这使得小分子的一致性定量分析变得复杂。虽然蒸发制备的样品会产生显著的SERS增强效果,从而降低检测限,但这些增强效果在SERS表面的分布本质上是随机的。通过获取这些干燥表面的空间分辨SERS光谱,我们发现这种增强效果遵循幂律,是分析物浓度的函数。因此,根据定义,不存在SERS增强的真正平均值,需要采用另一种方法来获得可重复的定量结果。在本研究中,我们引入了一种使用累积分布函数(CDF)分析SERS数据的新方法。使用蒸发至干的羟胺还原银胶体,对水性基质中的抗病毒药物替诺福韦(TFV)进行定量,最低可检测到临床相关浓度25 ng/mL。本研究中的数据为将使用CDF的新型统计方法与简单廉价的实验技术相结合的益处提供了理论依据,以提高通过SERS对水性TFV进行定量分析的精度、准确性和分析灵敏度。与传统的SERS强度计算相比,使用CDF分析生成的TFV校准曲线显示出更高的分析灵敏度(以归一化校准曲线平均斜率增加0.25的形式)。在SERS表面干燥的第二批纳米颗粒和分析物,随后进行CDF分析,显示出进一步的分析灵敏度,归一化校准曲线斜率增加0.23,并且第二批样品重复测量之间的变化减小,平均标准偏差降低0.02。本文使用CDF对SERS数据进行的定量分析有望成为一种可重复的SERS数据定量分析方法,这是在临床和工业环境中将SERS作为一种分析方法实施的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0351/10785616/dc5fc2d001c9/ao3c07641_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验