文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估用于检测道路死亡濒危巴西动物的 YOLO 架构。

Evaluating YOLO architectures for detecting road killed endangered Brazilian animals.

机构信息

Institute of Science Mathematics and Computer Science, University of São Paulo, 400 Trabalhador São-carlense Avenue, São Carlos, São Paulo, 13566-590, Brazil.

Departament of Informatics, Federal Institute of São Paulo - Campus Catanduva, 239 Pastor José Dutra de Moraes Avenue, Catanduva, São Paulo, 15808-305, Brazil.

出版信息

Sci Rep. 2024 Jan 16;14(1):1353. doi: 10.1038/s41598-024-52054-y.


DOI:10.1038/s41598-024-52054-y
PMID:38228808
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10791680/
Abstract

Wildlife roadkill is a recurring, dangerous problem that affects both humans and animals and has received increasing attention from environmentalists worldwide. Addressing this problem is difficult due to the high investments required in road infrastructure to effectively reduce wildlife vehicle collisions. Despite recent applications of machine learning techniques in low-cost and economically viable detection systems, e.g., for alerting drivers about the presence of animals and collecting statistics on endangered animal species, the success and wide adoption of these systems depend heavily on the availability of data for system training. The lack of training data negatively impacts the feature extraction of machine learning models, which is crucial for successful animal detection and classification. In this paper, we evaluate the performance of several state-of-the-art object detection models on limited data for model training. The selected models are based on the YOLO architecture, which is well-suited for and commonly used in real-time object detection. These include the YoloV4, Scaled-YoloV4, YoloV5, YoloR, YoloX, and YoloV7 models. We focus on Brazilian endangered animal species and use the BRA-Dataset for model training. We also assess the effectiveness of data augmentation and transfer learning techniques in our evaluation. The models are compared using summary metrics such as precision, recall, mAP, and FPS and are qualitatively analyzed considering classic computer vision problems. The results show that the architecture with the best results against false negatives is Scaled-YoloV4, while the best FPS detection score is the nano version of YoloV5.

摘要

野生动物路杀是一个反复出现的危险问题,既影响人类也影响动物,已受到全球环保主义者的越来越多的关注。由于道路基础设施需要大量投资才能有效减少野生动物与车辆的碰撞,因此解决这个问题很困难。尽管最近在低成本和经济可行的检测系统中应用了机器学习技术,例如,提醒驾驶员注意动物的存在并收集濒危动物物种的统计数据,但这些系统的成功和广泛采用在很大程度上取决于用于系统培训的数据可用性。缺乏训练数据会对机器学习模型的特征提取产生负面影响,这对成功的动物检测和分类至关重要。在本文中,我们评估了几种最先进的目标检测模型在有限数据上进行模型训练的性能。选择的模型基于 YOLO 架构,该架构非常适合且常用于实时目标检测。这些模型包括 YoloV4、Scaled-YoloV4、YoloV5、YoloR、YoloX 和 YoloV7 模型。我们专注于巴西濒危动物物种,并使用 BRA-Dataset 进行模型训练。我们还评估了数据扩充和迁移学习技术在我们评估中的有效性。使用精度、召回率、mAP 和 FPS 等汇总指标对模型进行比较,并考虑经典计算机视觉问题对其进行定性分析。结果表明,针对假阴性具有最佳效果的架构是 Scaled-YoloV4,而 FPS 检测得分最高的是 YoloV5 的 nano 版本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/03c54564e7d4/41598_2024_52054_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/a6418f78a628/41598_2024_52054_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/f652aa828afc/41598_2024_52054_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/f83abca93ddd/41598_2024_52054_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/7abb24f05b0f/41598_2024_52054_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/f02e69ac388b/41598_2024_52054_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/8370c77961b7/41598_2024_52054_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/18911d918588/41598_2024_52054_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/cfa606f18d7a/41598_2024_52054_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/228f788c1f13/41598_2024_52054_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/716474b8049a/41598_2024_52054_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/3960d33af2bc/41598_2024_52054_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/a38826acd540/41598_2024_52054_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/c16006d967bf/41598_2024_52054_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/bb48db736617/41598_2024_52054_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/9e18d9664343/41598_2024_52054_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/b4ca346aee6b/41598_2024_52054_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/3c3888ee34ad/41598_2024_52054_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/03c54564e7d4/41598_2024_52054_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/a6418f78a628/41598_2024_52054_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/f652aa828afc/41598_2024_52054_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/f83abca93ddd/41598_2024_52054_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/7abb24f05b0f/41598_2024_52054_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/f02e69ac388b/41598_2024_52054_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/8370c77961b7/41598_2024_52054_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/18911d918588/41598_2024_52054_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/cfa606f18d7a/41598_2024_52054_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/228f788c1f13/41598_2024_52054_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/716474b8049a/41598_2024_52054_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/3960d33af2bc/41598_2024_52054_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/a38826acd540/41598_2024_52054_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/c16006d967bf/41598_2024_52054_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/bb48db736617/41598_2024_52054_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/9e18d9664343/41598_2024_52054_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/b4ca346aee6b/41598_2024_52054_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/3c3888ee34ad/41598_2024_52054_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f8a/10791680/03c54564e7d4/41598_2024_52054_Fig18_HTML.jpg

相似文献

[1]
Evaluating YOLO architectures for detecting road killed endangered Brazilian animals.

Sci Rep. 2024-1-16

[2]
Comparison of Pre-Trained YOLO Models on Steel Surface Defects Detector Based on Transfer Learning with GPU-Based Embedded Devices.

Sensors (Basel). 2022-12-16

[3]
A fine-tuned YOLOv5 deep learning approach for real-time house number detection.

PeerJ Comput Sci. 2023-7-3

[4]
SHEL5K: An Extended Dataset and Benchmarking for Safety Helmet Detection.

Sensors (Basel). 2022-3-17

[5]
DeepSperm: A robust and real-time bull sperm-cell detection in densely populated semen videos.

Comput Methods Programs Biomed. 2021-9

[6]
Weed target detection at seedling stage in paddy fields based on YOLOX.

PLoS One. 2023

[7]
VV-YOLO: A Vehicle View Object Detection Model Based on Improved YOLOv4.

Sensors (Basel). 2023-3-23

[8]
An Online Rail Track Fastener Classification System Based on YOLO Models.

Sensors (Basel). 2022-12-17

[9]
Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications.

Eur Phys J E Soft Matter. 2023-5-8

[10]
CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism.

PeerJ Comput Sci. 2023-7-20

引用本文的文献

[1]
A texture enhanced attention model for defect detection in thermal protection materials.

Sci Rep. 2025-2-10

[2]
A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence.

Materials (Basel). 2024-2-27

本文引用的文献

[1]
Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide.

Nat Commun. 2023-3-27

[2]
Potential Movement Corridors and High Road-Kill Likelihood do not Spatially Coincide for Felids in Brazil: Implications for Road Mitigation.

Environ Manage. 2021-2

[3]
A Real-Time Automatic Plate Recognition System Based on Optical Character Recognition and Wireless Sensor Networks for ITS.

Sensors (Basel). 2019-12-20

[4]
Ecology of conflict: marine food supply affects human-wildlife interactions on land.

Sci Rep. 2016-5-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索