Suppr超能文献

构建用于稳定且高能量密度硅微粒阳极的电子束诱导共价键

Formulating Electron Beam-Induced Covalent Linkages for Stable and High-Energy-Density Silicon Microparticle Anode.

作者信息

Je Minjun, Son Hye Bin, Han Yu-Jin, Jang Hangeol, Kim Sungho, Kim Dongjoo, Kang Jieun, Jeong Jin-Hyeok, Hwang Chihyun, Song Gyujin, Song Hyun-Kon, Ha Tae Sung, Park Soojin

机构信息

Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.

Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan, 44776, Republic of Korea.

出版信息

Adv Sci (Weinh). 2024 Mar;11(12):e2305298. doi: 10.1002/advs.202305298. Epub 2024 Jan 17.

Abstract

High-capacity silicon (Si) materials hold a position at the forefront of advanced lithium-ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano- to micron-sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost-effective but practical approach of electron beam technology, the resulting 500 mAh-pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg, 1022 Wh L, highlighting the feasibility even in current battery production lines.

摘要

高容量硅(Si)材料在先进锂离子电池领域占据前沿地位。其内在潜力为大幅提高电池能量密度提供了相当大的优势,通过将范式从纳米级硅颗粒转变为微米级硅颗粒,能够最大限度地实现效益最大化。然而,固有的结构不稳定性仍然是其实际应用的重大障碍,特别是对于较大的硅颗粒而言。在此,报道了一种通过电子束辐照将硅微粒(5微米)与高弹性凝胶聚合物电解质(GPE)结合的共价互连系统。该集成系统减轻了纯硅的大幅体积膨胀,增强了整体稳定性,同时由于高离子电导率加速了电荷载流子动力学。通过电子束技术这种经济高效且实用的方法,所得到的500毫安软包电池展现出卓越的稳定性以及413瓦时/千克、1022瓦时/升的高重量/体积能量密度,突出了即使在当前电池生产线中也具有可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验