Suppr超能文献

基于功能近红外光谱(fNIRS)数据的机器学习分类基准框架。

Benchmarking framework for machine learning classification from fNIRS data.

作者信息

Benerradi Johann, Clos Jeremie, Landowska Aleksandra, Valstar Michel F, Wilson Max L

机构信息

School of Computer Science, University of Nottingham, Nottingham, United Kingdom.

出版信息

Front Neuroergon. 2023 Mar 3;4:994969. doi: 10.3389/fnrgo.2023.994969. eCollection 2023.

Abstract

BACKGROUND

While efforts to establish best practices with functional near infrared spectroscopy (fNIRS) signal processing have been published, there are still no community standards for applying machine learning to fNIRS data. Moreover, the lack of open source benchmarks and standard expectations for reporting means that published works often claim high generalisation capabilities, but with poor practices or missing details in the paper. These issues make it hard to evaluate the performance of models when it comes to choosing them for brain-computer interfaces.

METHODS

We present an open-source benchmarking framework, BenchNIRS, to establish a best practice machine learning methodology to evaluate models applied to fNIRS data, using five open access datasets for brain-computer interface (BCI) applications. The BenchNIRS framework, using a robust methodology with nested cross-validation, enables researchers to optimise models and evaluate them without bias. The framework also enables us to produce useful metrics and figures to detail the performance of new models for comparison. To demonstrate the utility of the framework, we present a benchmarking of six baseline models [linear discriminant analysis (LDA), support-vector machine (SVM), k-nearest neighbours (kNN), artificial neural network (ANN), convolutional neural network (CNN), and long short-term memory (LSTM)] on the five datasets and investigate the influence of different factors on the classification performance, including: number of training examples and size of the time window of each fNIRS sample used for classification. We also present results with a sliding window as opposed to simple classification of epochs, and with a personalised approach (within subject data classification) as opposed to a generalised approach (unseen subject data classification).

RESULTS AND DISCUSSION

Results show that the performance is typically lower than the scores often reported in literature, and without great differences between models, highlighting that predicting unseen data remains a difficult task. Our benchmarking framework provides future authors, who are achieving significant high classification scores, with a tool to demonstrate the advances in a comparable way. To complement our framework, we contribute a set of recommendations for methodology decisions and writing papers, when applying machine learning to fNIRS data.

摘要

背景

虽然已经有关于建立功能近红外光谱(fNIRS)信号处理最佳实践的研究发表,但在将机器学习应用于fNIRS数据方面仍没有社区标准。此外,缺乏开源基准和报告的标准期望意味着已发表的作品往往声称具有很高的泛化能力,但论文中的实践不佳或细节缺失。这些问题使得在为脑机接口选择模型时难以评估模型的性能。

方法

我们提出了一个开源基准测试框架BenchNIRS,以建立一种最佳实践的机器学习方法,用于评估应用于fNIRS数据的模型,使用五个用于脑机接口(BCI)应用的开放获取数据集。BenchNIRS框架采用具有嵌套交叉验证的稳健方法,使研究人员能够优化模型并无偏差地评估它们。该框架还使我们能够生成有用的指标和图表,以详细说明新模型的性能以便进行比较。为了证明该框架的实用性,我们在五个数据集上对六个基线模型[线性判别分析(LDA)、支持向量机(SVM)、k近邻(kNN)、人工神经网络(ANN)、卷积神经网络(CNN)和长短期记忆(LSTM)]进行了基准测试,并研究了不同因素对分类性能的影响,包括:用于分类的每个fNIRS样本的训练示例数量和时间窗口大小。我们还展示了与简单的epoch分类相反的滑动窗口结果,以及与广义方法(未见受试者数据分类)相反的个性化方法(受试者内数据分类)的结果。

结果与讨论

结果表明,性能通常低于文献中经常报道的分数,并且模型之间没有很大差异,这突出表明预测未见数据仍然是一项艰巨的任务。我们的基准测试框架为那些获得显著高分的未来作者提供了一种以可比方式展示进展的工具。为了补充我们的框架,我们在将机器学习应用于fNIRS数据时,为方法决策和论文撰写提供了一套建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a3/10790918/24eab6392cb2/fnrgo-04-994969-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验