Department of Systems Engineering and Automation, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain.
Sci Rep. 2024 Jan 18;14(1):1646. doi: 10.1038/s41598-024-51993-w.
In neurorehabilitation, assessment of functional problems is essential to define optimal rehabilitation treatments. Usually, this assessment process requires distinguishing between impaired and non-impaired behavior of limbs. One of the common muscle motor disorders affecting limbs is spasticity, which is complicated to quantify objectively due to the complex nature of motor control. Thus, the lack of heterogeneous samples of patients constituting an acceptable amount of data is an obstacle which is relevant to understanding the behavior of spasticity and, consequently, quantifying it. In this article, we use the 3D creation suite Blender combined with the MBLab add-on to generate synthetic samples of human body models, aiming to be as sufficiently representative as possible to real human samples. Exporting these samples to OpenSim and performing four specific upper limb movements, we analyze the muscle behavior by simulating the six degrees of spasticity contemplated by the Modified Ashworth Scale (MAS). The complete dataset of patients and movements is open-source and available for future research. This approach advocates the potential to generate synthetic data for testing and validating musculoskeletal models.
在神经康复中,评估功能问题对于确定最佳康复治疗方法至关重要。通常,此评估过程需要区分肢体受损和未受损的行为。一种常见的影响肢体的肌肉运动障碍是痉挛,由于运动控制的复杂性,很难客观地对其进行量化。因此,缺乏构成可接受数据量的异构患者样本是一个障碍,这对于理解痉挛的行为并因此对其进行量化具有重要意义。在本文中,我们使用 3D 创建套件 Blender 结合 MBLab 附加组件来生成人体模型的合成样本,旨在尽可能逼真地代表真实的人体样本。将这些样本导出到 OpenSim 并执行四个特定的上肢运动,我们通过模拟 Modified Ashworth Scale(MAS)考虑的六个痉挛度来分析肌肉行为。患者和运动的完整数据集是开源的,可供未来的研究使用。这种方法提倡为测试和验证肌肉骨骼模型生成合成数据的潜力。