Suppr超能文献

全球监测的膳食数据集协调:来自全球膳食数据库的方法和结果。

Harmonising dietary datasets for global surveillance: methods and findings from the Global Dietary Database.

机构信息

Friedman School of Nutrition Science and Policy, Tufts University, 150 Harrison Ave, Boston, MA02111, USA.

Food and Agriculture Organization of the United Nations, Rome, Italy.

出版信息

Public Health Nutr. 2024 Jan 19;27(1):e47. doi: 10.1017/S1368980024000211.

Abstract

OBJECTIVE

The Global Dietary Database (GDD) expanded its previous methods to harmonise and publicly disseminate individual-level dietary data from nutrition surveys worldwide.

DESIGN

Analysis of cross-sectional data.

SETTING

Global.

PARTICIPANTS

General population.

METHODS

Comprehensive methods to streamline the harmonisation of primary, individual-level 24-h recall and food record data worldwide were developed. To standardise the varying food descriptions, FoodEx2 was used, a highly detailed food classification and description system developed and adapted for international use by European Food Safety Authority (EFSA). Standardised processes were developed to: identify eligible surveys; contact data owners; screen surveys for inclusion; harmonise data structure, variable definition and unit and food characterisation; perform data checks and publicly disseminate the harmonised datasets. The GDD joined forces with FAO and EFSA, given the shared goal of harmonising individual-level dietary data worldwide.

RESULTS

Of 1500 dietary surveys identified, 600 met the eligibility criteria, and 156 were prioritised and contacted; fifty-five surveys were included for harmonisation and, ultimately, fifty two were harmonised. The included surveys were primarily nationally representative (59 %); included high- (39 %), upper-middle (21 %), lower-middle (27 %) and low- (13 %) income countries; usually collected multiple recalls/ records (64 %) and largely captured both sexes, all ages and both rural and urban areas. Surveys from low- and lower-middle . high- and upper-middle income countries reported fewer nutrients (median 17 . 30) and rarely included nutrients relevant to diet-related chronic diseases, such as -3 fatty acids and Na.

CONCLUSIONS

Diverse 24-h recalls/records can be harmonised to provide highly granular, standardised data, supporting nutrition programming, research and capacity development worldwide.

摘要

目的

全球饮食数据库(GDD)扩展了其先前的方法,以协调和公开传播来自全球营养调查的个人层面饮食数据。

设计

横断面数据分析。

地点

全球。

参与者

一般人群。

方法

制定了综合方法来简化全球范围内初级、个人层面 24 小时回顾和食物记录数据的协调。为了标准化不同的食物描述,使用了 FoodEx2,这是一个由欧洲食品安全局(EFSA)开发和适应国际使用的高度详细的食物分类和描述系统。制定了标准化流程来:确定合格的调查;联系数据所有者;筛选纳入调查;协调数据结构、变量定义和单位以及食物特征;进行数据检查并公开传播协调数据集。GDD 与粮农组织和 EFSA 合作,因为它们有共同的目标,即协调全球个人层面的饮食数据。

结果

在确定的 1500 项饮食调查中,有 600 项符合资格标准,其中 156 项被优先考虑并联系;55 项调查被纳入协调,最终有 52 项得到协调。纳入的调查主要是全国代表性的(59%);包括高收入(39%)、上中等收入(21%)、中下等收入(27%)和低收入(13%)国家;通常收集多次回顾/记录(64%),并主要涵盖男女、所有年龄组以及城乡地区。来自低收入和中下等收入国家和高收入和上中等收入国家的调查报告的营养素较少(中位数为 17.30),很少包括与饮食相关的慢性疾病相关的营养素,如 -3 脂肪酸和 Na。

结论

可以协调各种 24 小时回顾/记录,提供高度详细、标准化的数据,支持全球营养规划、研究和能力建设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5099/10882534/00646468956d/S1368980024000211_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验