Payá Celia, Belda-Palazón Borja, Vera-Sirera Francisco, Pérez-Pérez Julia, Jordá Lucía, Rodrigo Ismael, Bellés José María, López-Gresa María Pilar, Lisón Purificación
Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain.
Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.
Hortic Res. 2023 Nov 28;11(1):uhad248. doi: 10.1093/hr/uhad248. eCollection 2024 Jan.
Biotic and abiotic stresses can severely limit crop productivity. In response to drought, plants close stomata to prevent water loss. Furthermore, stomata are the main entry point for several pathogens. Therefore, the development of natural products to control stomata closure can be considered a sustainable strategy to cope with stresses in agriculture. Plants respond to different stresses by releasing volatile organic compounds. Green leaf volatiles, which are commonly produced across different plant species after tissue damage, comprise an important group within volatile organic compounds. Among them, ()-3-hexenyl butyrate (HB) was described as a natural inducer of stomatal closure, playing an important role in stomatal immunity, although its mechanism of action is still unknown. Through different genetic, pharmacological, and biochemical approaches, we here uncover that HB perception initiates various defence signalling events, such as activation of Ca permeable channels, mitogen-activated protein kinases, and production of Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species. Furthermore, HB-mediated stomata closure was found to be independent of abscisic acid biosynthesis and signalling. Additionally, exogenous treatments with HB alleviate water stress and improve fruit productivity in tomato plants. The efficacy of HB was also tested under open field conditions, leading to enhanced resistance against spp. and infection in potato and tomato plants, respectively. Taken together, our results provide insights into the HB signalling transduction pathway, confirming its role in stomatal closure and plant immune system activation, and propose HB as a new phytoprotectant for the sustainable control of biotic and abiotic stresses in agriculture.
生物和非生物胁迫会严重限制作物产量。干旱时,植物会关闭气孔以防止水分流失。此外,气孔是多种病原体的主要入侵点。因此,开发控制气孔关闭的天然产物可被视为应对农业胁迫的可持续策略。植物通过释放挥发性有机化合物对不同胁迫作出反应。绿叶挥发物是组织受损后不同植物物种普遍产生的一类物质,属于挥发性有机化合物中的重要组成部分。其中,()-3-己烯基丁酸酯(HB)被描述为气孔关闭的天然诱导剂,在气孔免疫中起重要作用,但其作用机制尚不清楚。通过不同的遗传学、药理学和生物化学方法,我们在此发现HB的感知引发了各种防御信号事件,如钙通透性通道的激活、丝裂原活化蛋白激酶以及烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶介导的活性氧的产生。此外,发现HB介导的气孔关闭与脱落酸的生物合成和信号传导无关。另外,用HB进行外源处理可缓解番茄植株的水分胁迫并提高果实产量。还在田间条件下测试了HB的功效,分别提高了马铃薯和番茄植株对 spp. 和 感染的抗性。综上所述,我们的结果为HB信号转导途径提供了见解,证实了其在气孔关闭和植物免疫系统激活中的作用,并提出HB作为一种新型植物保护剂,用于可持续控制农业中的生物和非生物胁迫。