文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

BIGDML——迈向精确的材料量子机器学习力场

BIGDML-Towards accurate quantum machine learning force fields for materials.

作者信息

Sauceda Huziel E, Gálvez-González Luis E, Chmiela Stefan, Paz-Borbón Lauro Oliver, Müller Klaus-Robert, Tkatchenko Alexandre

机构信息

Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México C.P., 04510, Mexico.

Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany.

出版信息

Nat Commun. 2022 Jun 29;13(1):3733. doi: 10.1038/s41467-022-31093-x.


DOI:10.1038/s41467-022-31093-x
PMID:35768400
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9243122/
Abstract

Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to small subsets of chemical space or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 geometries for materials including pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemisorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model employs the full relevant symmetry group for a given material, does not assume artificial atom types or localization of atomic interactions and exhibits high data efficiency and state-of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set of materials. Extensive path-integral molecular dynamics carried out with BIGDML models demonstrate the counterintuitive localization of benzene-graphene dynamics induced by nuclear quantum effects and their strong contributions to the hydrogen diffusion coefficient in a Pd crystal for a wide range of temperatures.

摘要

机器学习力场(MLFF)应具备准确性、计算和数据效率,并适用于分子、材料及其界面。目前,MLFF常常引入权衡因素,限制了它们在化学空间小子集上的实际适用性,或者需要详尽的数据集进行训练。在此,我们介绍了受布拉维晶格启发的梯度域机器学习(BIGDML)方法,并展示了其使用仅包含10 - 200个几何结构的训练集来构建可靠力场的能力,这些材料包括原始的和含缺陷的二维及三维半导体和金属,以及表面化学吸附和物理吸附的原子及分子吸附质。BIGDML模型采用给定材料的完整相关对称群,不假设人为的原子类型或原子相互作用的局域化,并且对于一系列材料展现出高数据效率和达到先进水平的能量精度(每个原子的误差大幅低于1毫电子伏特)。使用BIGDML模型进行的广泛路径积分分子动力学研究表明,核量子效应会导致苯 - 石墨烯动力学出现违反直觉的局域化现象,并且在很宽的温度范围内,这些效应会对钯晶体中的氢扩散系数产生显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/5b5f24760585/41467_2022_31093_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/4e26c07b458f/41467_2022_31093_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/3737070c0e4f/41467_2022_31093_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/880e3986717c/41467_2022_31093_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/5dc68426488b/41467_2022_31093_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/88a1bf92653c/41467_2022_31093_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/0e6c80bae8dc/41467_2022_31093_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/d7d0a15db4de/41467_2022_31093_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/b2c9045e0239/41467_2022_31093_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/5b5f24760585/41467_2022_31093_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/4e26c07b458f/41467_2022_31093_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/3737070c0e4f/41467_2022_31093_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/880e3986717c/41467_2022_31093_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/5dc68426488b/41467_2022_31093_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/88a1bf92653c/41467_2022_31093_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/0e6c80bae8dc/41467_2022_31093_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/d7d0a15db4de/41467_2022_31093_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/b2c9045e0239/41467_2022_31093_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/9243122/5b5f24760585/41467_2022_31093_Fig9_HTML.jpg

相似文献

[1]
BIGDML-Towards accurate quantum machine learning force fields for materials.

Nat Commun. 2022-6-29

[2]
Efficient interatomic descriptors for accurate machine learning force fields of extended molecules.

Nat Commun. 2023-6-15

[3]
The emergence of machine learning force fields in drug design.

Med Res Rev. 2024-5

[4]
Machine learning of accurate energy-conserving molecular force fields.

Sci Adv. 2017-5-5

[5]
Improving machine learning force fields for molecular dynamics simulations with fine-grained force metrics.

J Chem Phys. 2023-7-21

[6]
Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope.

J Chem Theory Comput. 2023-12-12

[7]
Improving molecular force fields across configurational space by combining supervised and unsupervised machine learning.

J Chem Phys. 2021-3-28

[8]
A Machine Learning Force Field for Bio-Macromolecular Modeling Based on Quantum Chemistry-Calculated Interaction Energy Datasets.

Bioengineering (Basel). 2024-1-3

[9]
A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.

J Mol Model. 2024-1-18

[10]
Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning.

Phys Chem Chem Phys. 2022-1-19

引用本文的文献

[1]
Crash testing machine learning force fields for molecules, materials, and interfaces: model analysis in the TEA Challenge 2023.

Chem Sci. 2025-2-10

[2]
Crash testing machine learning force fields for molecules, materials, and interfaces: molecular dynamics in the TEA challenge 2023.

Chem Sci. 2025-2-3

[3]
Complete and Efficient Covariants for Three-Dimensional Point Configurations with Application to Learning Molecular Quantum Properties.

J Phys Chem Lett. 2024-12-26

[4]
Rapid Characterization of Point Defects in Solid-State Ion Conductors Using Raman Spectroscopy, Machine-Learning Force Fields, and Atomic Raman Tensors.

J Am Chem Soc. 2024-10-2

[5]
SpaiNN: equivariant message passing for excited-state nonadiabatic molecular dynamics.

Chem Sci. 2024-9-2

[6]
Insights into One-Dimensional Thermoelectric Materials: A Concise Review of Nanowires and Nanotubes.

Nanomaterials (Basel). 2024-7-29

[7]
A Euclidean transformer for fast and stable machine learned force fields.

Nat Commun. 2024-8-6

[8]
Continuum Robots and Magnetic Soft Robots: From Models to Interdisciplinary Challenges for Medical Applications.

Micromachines (Basel). 2024-2-24

[9]
Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties.

J Chem Theory Comput. 2024-2-13

[10]
Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope.

J Chem Theory Comput. 2023-12-12

本文引用的文献

[1]
Exploring chemical compound space with quantum-based machine learning.

Nat Rev Chem. 2020-7

[2]
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects.

Nat Commun. 2021-12-14

[3]
Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE.

J Chem Theory Comput. 2021-12-14

[4]
Physics-Inspired Structural Representations for Molecules and Materials.

Chem Rev. 2021-8-25

[5]
Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems.

Chem Rev. 2021-8-25

[6]
Machine Learning Force Fields.

Chem Rev. 2021-8-25

[7]
Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature.

Nat Commun. 2021-1-19

[8]
A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer.

Nat Commun. 2021-1-15

[9]
Origins of structural and electronic transitions in disordered silicon.

Nature. 2021-1

[10]
Deep Learning in Protein Structural Modeling and Design.

Patterns (N Y). 2020-11-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索