Sauceda Huziel E, Gálvez-González Luis E, Chmiela Stefan, Paz-Borbón Lauro Oliver, Müller Klaus-Robert, Tkatchenko Alexandre
Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México C.P., 04510, Mexico.
Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany.
Nat Commun. 2022 Jun 29;13(1):3733. doi: 10.1038/s41467-022-31093-x.
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to small subsets of chemical space or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 geometries for materials including pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemisorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model employs the full relevant symmetry group for a given material, does not assume artificial atom types or localization of atomic interactions and exhibits high data efficiency and state-of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set of materials. Extensive path-integral molecular dynamics carried out with BIGDML models demonstrate the counterintuitive localization of benzene-graphene dynamics induced by nuclear quantum effects and their strong contributions to the hydrogen diffusion coefficient in a Pd crystal for a wide range of temperatures.
机器学习力场(MLFF)应具备准确性、计算和数据效率,并适用于分子、材料及其界面。目前,MLFF常常引入权衡因素,限制了它们在化学空间小子集上的实际适用性,或者需要详尽的数据集进行训练。在此,我们介绍了受布拉维晶格启发的梯度域机器学习(BIGDML)方法,并展示了其使用仅包含10 - 200个几何结构的训练集来构建可靠力场的能力,这些材料包括原始的和含缺陷的二维及三维半导体和金属,以及表面化学吸附和物理吸附的原子及分子吸附质。BIGDML模型采用给定材料的完整相关对称群,不假设人为的原子类型或原子相互作用的局域化,并且对于一系列材料展现出高数据效率和达到先进水平的能量精度(每个原子的误差大幅低于1毫电子伏特)。使用BIGDML模型进行的广泛路径积分分子动力学研究表明,核量子效应会导致苯 - 石墨烯动力学出现违反直觉的局域化现象,并且在很宽的温度范围内,这些效应会对钯晶体中的氢扩散系数产生显著影响。
Nat Commun. 2022-6-29
Med Res Rev. 2024-5
J Chem Theory Comput. 2023-12-12
Nanomaterials (Basel). 2024-7-29
Nat Commun. 2024-8-6
Micromachines (Basel). 2024-2-24
J Chem Theory Comput. 2023-12-12
Nat Rev Chem. 2020-7
J Chem Theory Comput. 2021-12-14
Chem Rev. 2021-8-25
Chem Rev. 2021-8-25
Patterns (N Y). 2020-11-12