Suppr超能文献

一种用于更全面解释妄想的新预测编码模型。

A new predictive coding model for a more comprehensive account of delusions.

作者信息

Harding Jessica Niamh, Wolpe Noham, Brugger Stefan Peter, Navarro Victor, Teufel Christoph, Fletcher Paul Charles

机构信息

School of Clinical Medicine, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK.

Department of Psychiatry, University of Cambridge, Cambridge, UK; Department of Physical Therapy, The Stanley Steyer School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

出版信息

Lancet Psychiatry. 2024 Apr;11(4):295-302. doi: 10.1016/S2215-0366(23)00411-X. Epub 2024 Jan 16.

Abstract

Attempts to understand psychosis-the experience of profoundly altered perceptions and beliefs-raise questions about how the brain models the world. Standard predictive coding approaches suggest that it does so by minimising mismatches between incoming sensory evidence and predictions. By adjusting predictions, we converge iteratively on a best guess of the nature of the reality. Recent arguments have shown that a modified version of this framework-hybrid predictive coding-provides a better model of how healthy agents make inferences about external reality. We suggest that this more comprehensive model gives us a richer understanding of psychosis compared with standard predictive coding accounts. In this Personal View, we briefly describe the hybrid predictive coding model and show how it offers a more comprehensive account of the phenomenology of delusions, thereby providing a potentially powerful new framework for computational psychiatric approaches to psychosis. We also make suggestions for future work that could be important in formalising this novel perspective.

摘要

试图理解精神病(即感知和信念发生深刻改变的体验)引发了关于大脑如何构建世界模型的问题。标准的预测编码方法表明,大脑通过最小化传入感官证据与预测之间的不匹配来做到这一点。通过调整预测,我们迭代地收敛于对现实本质的最佳猜测。最近的观点表明,这个框架的一个修改版本——混合预测编码——为健康个体如何对外部现实进行推理提供了更好的模型。我们认为,与标准预测编码理论相比,这个更全面的模型能让我们对精神病有更深入的理解。在这篇个人观点文章中,我们简要描述了混合预测编码模型,并展示它如何为妄想现象学提供更全面的解释,从而为精神病的计算精神病学方法提供一个潜在的强大新框架。我们还对未来的工作提出了建议,这些工作对于将这一新观点形式化可能很重要。

相似文献

1
A new predictive coding model for a more comprehensive account of delusions.
Lancet Psychiatry. 2024 Apr;11(4):295-302. doi: 10.1016/S2215-0366(23)00411-X. Epub 2024 Jan 16.
2
The Predictive Coding Account of Psychosis.
Biol Psychiatry. 2018 Nov 1;84(9):634-643. doi: 10.1016/j.biopsych.2018.05.015. Epub 2018 May 25.
3
Understanding Cognitive Behavioral Therapy for Psychosis Through the Predictive Coding Framework.
Biol Psychiatry Glob Open Sci. 2024 May 13;4(4):100333. doi: 10.1016/j.bpsgos.2024.100333. eCollection 2024 Jul.
4
Subjective experience and meaning of delusions in psychosis: a systematic review and qualitative evidence synthesis.
Lancet Psychiatry. 2022 Jun;9(6):458-476. doi: 10.1016/S2215-0366(22)00104-3. Epub 2022 May 4.
5
Towards a Unifying Cognitive, Neurophysiological, and Computational Neuroscience Account of Schizophrenia.
Schizophr Bull. 2019 Sep 11;45(5):1092-1100. doi: 10.1093/schbul/sby154.
6
The paranoia as defence model of persecutory delusions: a systematic review and meta-analysis.
Lancet Psychiatry. 2018 Nov;5(11):913-929. doi: 10.1016/S2215-0366(18)30339-0. Epub 2018 Oct 9.
8
A Bayesian perspective on delusions: Suggestions for modifying two reasoning tasks.
J Behav Ther Exp Psychiatry. 2017 Sep;56:4-11. doi: 10.1016/j.jbtep.2016.08.006. Epub 2016 Aug 11.
9
Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals.
Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13401-6. doi: 10.1073/pnas.1503916112. Epub 2015 Oct 12.
10
Delusions in postpartum psychosis: Implications for cognitive theories.
Cortex. 2024 Aug;177:194-208. doi: 10.1016/j.cortex.2024.04.018. Epub 2024 May 24.

引用本文的文献

1
Depth inversion illusion and its relationship to positive symptoms in clinical and non-clinical voice hearers.
Cogn Neuropsychiatry. 2025 Jan;30(1):31-42. doi: 10.1080/13546805.2025.2467974. Epub 2025 Feb 19.

本文引用的文献

1
Is predictive coding falsifiable?
Neurosci Biobehav Rev. 2023 Nov;154:105404. doi: 10.1016/j.neubiorev.2023.105404. Epub 2023 Sep 23.
2
Hybrid predictive coding: Inferring, fast and slow.
PLoS Comput Biol. 2023 Aug 2;19(8):e1011280. doi: 10.1371/journal.pcbi.1011280. eCollection 2023 Aug.
3
Resolving the Delusion Paradox.
Schizophr Bull. 2023 Nov 29;49(6):1425-1436. doi: 10.1093/schbul/sbad084.
4
Delusion and Reason.
Schizophr Bull. 2022 Dec 2. doi: 10.1093/schbul/sbac185.
7
A Predictive Coding Framework for Understanding Major Depression.
Front Hum Neurosci. 2022 Mar 3;16:787495. doi: 10.3389/fnhum.2022.787495. eCollection 2022.
9
A Computational Analysis of Abnormal Belief Updating Processes and Their Association With Psychotic Experiences and Childhood Trauma in a UK Birth Cohort.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 Jul;7(7):725-734. doi: 10.1016/j.bpsc.2021.12.007. Epub 2021 Dec 22.
10
Everything is connected: Inference and attractors in delusions.
Schizophr Res. 2022 Jul;245:5-22. doi: 10.1016/j.schres.2021.07.032. Epub 2021 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验