Harding Jessica Niamh, Wolpe Noham, Brugger Stefan Peter, Navarro Victor, Teufel Christoph, Fletcher Paul Charles
School of Clinical Medicine, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK.
Department of Psychiatry, University of Cambridge, Cambridge, UK; Department of Physical Therapy, The Stanley Steyer School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
Lancet Psychiatry. 2024 Apr;11(4):295-302. doi: 10.1016/S2215-0366(23)00411-X. Epub 2024 Jan 16.
Attempts to understand psychosis-the experience of profoundly altered perceptions and beliefs-raise questions about how the brain models the world. Standard predictive coding approaches suggest that it does so by minimising mismatches between incoming sensory evidence and predictions. By adjusting predictions, we converge iteratively on a best guess of the nature of the reality. Recent arguments have shown that a modified version of this framework-hybrid predictive coding-provides a better model of how healthy agents make inferences about external reality. We suggest that this more comprehensive model gives us a richer understanding of psychosis compared with standard predictive coding accounts. In this Personal View, we briefly describe the hybrid predictive coding model and show how it offers a more comprehensive account of the phenomenology of delusions, thereby providing a potentially powerful new framework for computational psychiatric approaches to psychosis. We also make suggestions for future work that could be important in formalising this novel perspective.
试图理解精神病(即感知和信念发生深刻改变的体验)引发了关于大脑如何构建世界模型的问题。标准的预测编码方法表明,大脑通过最小化传入感官证据与预测之间的不匹配来做到这一点。通过调整预测,我们迭代地收敛于对现实本质的最佳猜测。最近的观点表明,这个框架的一个修改版本——混合预测编码——为健康个体如何对外部现实进行推理提供了更好的模型。我们认为,与标准预测编码理论相比,这个更全面的模型能让我们对精神病有更深入的理解。在这篇个人观点文章中,我们简要描述了混合预测编码模型,并展示它如何为妄想现象学提供更全面的解释,从而为精神病的计算精神病学方法提供一个潜在的强大新框架。我们还对未来的工作提出了建议,这些工作对于将这一新观点形式化可能很重要。