基于加权亲和力和自扩散的多组学整合用于癌症亚型识别。

Multi-omics integration with weighted affinity and self-diffusion applied for cancer subtypes identification.

机构信息

School of Artificial Intelligence, Anhui Polytechnic University, Wuhu, 241000, China.

School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518000, China.

出版信息

J Transl Med. 2024 Jan 19;22(1):79. doi: 10.1186/s12967-024-04864-x.

Abstract

BACKGROUND

Characterizing cancer molecular subtypes is crucial for improving prognosis and individualized treatment. Integrative analysis of multi-omics data has become an important approach for disease subtyping, yielding better understanding of the complex biology. Current multi-omics integration tools and methods for cancer subtyping often suffer challenges of high computational efficiency as well as the problem of weight assignment on data types.

RESULTS

Here, we present an efficient multi-omics integration via weighted affinity and self-diffusion (MOSD) to dissect cancer heterogeneity. MOSD first construct local scaling affinity on each data type and then integrate all affinities by weighted linear combination, followed by the self-diffusion to further improve the patients' similarities for the downstream clustering analysis. To demonstrate the effectiveness and usefulness for cancer subtyping, we apply MOSD across ten cancer types with three measurements (Gene expression, DNA methylation, miRNA).

CONCLUSIONS

Our approach exhibits more significant differences in patient survival and computationally efficient benchmarking against several state-of-art integration methods and the identified molecular subtypes reveal strongly biological interpretability. The code as well as its implementation are available in GitHub: https://github.com/DXCODEE/MOSD .

摘要

背景

对癌症分子亚型进行特征描述对于改善预后和个体化治疗至关重要。多组学数据的综合分析已成为疾病亚分类的重要方法,可以更好地理解复杂的生物学。目前用于癌症亚分类的多组学集成工具和方法通常存在计算效率高的挑战,以及数据类型权重分配的问题。

结果

在这里,我们提出了一种有效的多组学集成方法,即通过加权亲和度和自扩散(MOSD)来剖析癌症异质性。MOSD 首先在每种数据类型上构建局部缩放亲和度,然后通过加权线性组合集成所有亲和度,然后进行自扩散,以进一步提高下游聚类分析中患者的相似性。为了证明其在癌症亚分类中的有效性和实用性,我们将 MOSD 应用于十种癌症类型,涉及三种测量(基因表达、DNA 甲基化、miRNA)。

结论

与几种最先进的集成方法相比,我们的方法在患者生存方面表现出更显著的差异,并且在计算效率方面具有优势,同时鉴定出的分子亚型具有很强的生物学可解释性。代码及其实现可在 GitHub 上获得:https://github.com/DXCODEE/MOSD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8f3/10799401/bd09c680b921/12967_2024_4864_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索