Upadhyay Rishabh, Golubev Dmitry S, Chang Yu-Cheng, Thomas George, Guthrie Andrew, Peltonen Joonas T, Pekola Jukka P
Pico group, QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076, Aalto, Finland.
VTT Technical Research Centre of Finland Ltd, Tietotie 3, 02150, Espoo, Finland.
Nat Commun. 2024 Jan 20;15(1):630. doi: 10.1038/s41467-024-44908-w.
The fragile nature of quantum circuits is a major bottleneck to scalable quantum applications. Operating at cryogenic temperatures, quantum circuits are highly vulnerable to amplifier backaction and external noise. Non-reciprocal microwave devices such as circulators and isolators are used for this purpose. These devices have a considerable footprint in cryostats, limiting the scalability of quantum circuits. As a proof-of-concept, here we report a compact microwave diode architecture, which exploits the non-linearity of a superconducting flux qubit. At the qubit degeneracy point we experimentally demonstrate a significant difference between the power levels transmitted in opposite directions. The observations align with the proposed theoretical model. At - 99 dBm input power, and near the qubit-resonator avoided crossing region, we report the transmission rectification ratio exceeding 90% for a 50 MHz wide frequency range from 6.81 GHz to 6.86 GHz, and over 60% for the 250 MHz range from 6.67 GHz to 6.91 GHz. The presented architecture is compact, and easily scalable towards multiple readout channels, potentially opening up diverse opportunities in quantum information, microwave read-out and optomechanics.
量子电路的脆弱性是可扩展量子应用的一个主要瓶颈。量子电路在低温下运行,极易受到放大器反作用和外部噪声的影响。为此使用了诸如环行器和隔离器等非互易微波器件。这些器件在低温恒温器中占用相当大的空间,限制了量子电路的可扩展性。作为概念验证,我们在此报告一种紧凑的微波二极管架构,它利用了超导磁通量子比特的非线性特性。在量子比特简并点,我们通过实验证明了相反方向传输的功率电平之间存在显著差异。这些观测结果与所提出的理论模型相符。在输入功率为 -99 dBm且接近量子比特 - 谐振器避免交叉区域时,我们报告在6.81 GHz至6.86 GHz的50 MHz宽频率范围内传输整流比超过90%,在6.67 GHz至6.91 GHz的250 MHz范围内超过60%。所展示的架构紧凑,易于扩展到多个读出通道,有可能在量子信息、微波读出和光机械学方面带来各种机会。