Suppr超能文献

机器学习与流行病学在应对碳青霉烯类耐药性方面的协同作用:全面综述

The Synergy of Machine Learning and Epidemiology in Addressing Carbapenem Resistance: A Comprehensive Review.

作者信息

Sakagianni Aikaterini, Koufopoulou Christina, Koufopoulos Petros, Feretzakis Georgios, Kalles Dimitris, Paxinou Evgenia, Myrianthefs Pavlos, Verykios Vassilios S

机构信息

Intensive Care Unit, Sismanogleio General Hospital, 15126 Marousi, Greece.

Anesthesiology Department, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece.

出版信息

Antibiotics (Basel). 2024 Oct 21;13(10):996. doi: 10.3390/antibiotics13100996.

Abstract

BACKGROUND/OBJECTIVES: Carbapenem resistance poses a significant threat to public health by undermining the efficacy of one of the last lines of antibiotic defense. Addressing this challenge requires innovative approaches that can enhance our understanding and ability to combat resistant pathogens. This review aims to explore the integration of machine learning (ML) and epidemiological approaches to understand, predict, and combat carbapenem-resistant pathogens. It examines how leveraging large datasets and advanced computational techniques can identify patterns, predict outbreaks, and inform targeted intervention strategies.

METHODS

The review synthesizes current knowledge on the mechanisms of carbapenem resistance, highlights the strengths and limitations of traditional epidemiological methods, and evaluates the transformative potential of ML. Real-world applications and case studies are used to demonstrate the practical benefits of combining ML and epidemiology. Technical and ethical challenges, such as data quality, model interpretability, and biases, are also addressed, with recommendations provided for overcoming these obstacles.

RESULTS

By integrating ML with epidemiological analysis, significant improvements can be made in predictive accuracy, identifying novel patterns in disease transmission, and designing effective public health interventions. Case studies illustrate the benefits of interdisciplinary collaboration in tackling carbapenem resistance, though challenges such as model interpretability and data biases must be managed.

CONCLUSIONS

The combination of ML and epidemiology holds great promise for enhancing our capacity to predict and prevent carbapenem-resistant infections. Future research should focus on overcoming technical and ethical challenges to fully realize the potential of these approaches. Interdisciplinary collaboration is key to developing sustainable strategies to combat antimicrobial resistance (AMR), ultimately improving patient outcomes and safeguarding public health.

摘要

背景/目的:碳青霉烯类耐药性对公共卫生构成重大威胁,因为它削弱了抗生素防御最后一道防线之一的疗效。应对这一挑战需要创新方法,以增强我们对抗耐药病原体的理解和能力。本综述旨在探索机器学习(ML)与流行病学方法的整合,以了解、预测和对抗碳青霉烯类耐药病原体。它研究了如何利用大型数据集和先进的计算技术来识别模式、预测疫情爆发并为有针对性的干预策略提供信息。

方法

本综述综合了关于碳青霉烯类耐药机制的现有知识,强调了传统流行病学方法的优势和局限性,并评估了ML的变革潜力。实际应用和案例研究用于证明将ML与流行病学相结合的实际益处。还讨论了技术和伦理挑战,如数据质量、模型可解释性和偏差,并提出了克服这些障碍的建议。

结果

通过将ML与流行病学分析相结合,可以在预测准确性、识别疾病传播新模式以及设计有效的公共卫生干预措施方面取得显著改进。案例研究说明了跨学科合作在应对碳青霉烯类耐药性方面的益处,尽管必须应对模型可解释性和数据偏差等挑战。

结论

ML与流行病学的结合在增强我们预测和预防碳青霉烯类耐药感染的能力方面具有巨大潜力。未来的研究应专注于克服技术和伦理挑战,以充分实现这些方法的潜力。跨学科合作是制定可持续战略以对抗抗菌药物耐药性(AMR)的关键,最终改善患者预后并保障公共卫生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf30/11505168/3a08fef58e1e/antibiotics-13-00996-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验