Suppr超能文献

使用生物标志物和X射线成像的COVID-19多模态机器学习检测方法

Multi-Modal Machine Learning Approach for COVID-19 Detection Using Biomarkers and X-Ray Imaging.

作者信息

Tur Kagan

机构信息

Internal Medicine Department, Faculty of Medicine, Ahi Evran University, Kirsehir 40200, Turkey.

出版信息

Diagnostics (Basel). 2024 Dec 13;14(24):2800. doi: 10.3390/diagnostics14242800.

Abstract

: Accurate and rapid detection of COVID-19 remains critical for clinical management, especially in resource-limited settings. Current diagnostic methods face challenges in terms of speed and reliability, creating a need for complementary AI-based models that integrate diverse data sources. : This study aimed to develop and evaluate a multi-modal machine learning model that combines clinical biomarkers and chest X-ray images to enhance diagnostic accuracy and provide interpretable insights. : We used a dataset of 250 patients (180 COVID-19 positive and 70 negative cases) collected from clinical settings. Biomarkers such as CRP, ferritin, NLR, and albumin were included alongside chest X-ray images. Random Forest and Gradient Boosting models were used for biomarkers, and ResNet and VGG CNN architectures were applied to imaging data. A late-fusion strategy integrated predictions from these modalities. Stratified k-fold cross-validation ensured robust evaluation while preventing data leakage. Model performance was assessed using AUC-ROC, F1-score, Specificity, Negative Predictive Value (NPV), and Matthews Correlation Coefficient (MCC), with confidence intervals calculated via bootstrap resampling. : The Gradient Boosting + VGG fusion model achieved the highest performance, with an AUC-ROC of 0.94, F1-score of 0.93, Specificity of 93%, NPV of 96%, and MCC of 0.91. SHAP and LIME interpretability analyses identified CRP, ferritin, and specific lung regions as key contributors to predictions. : The proposed multi-modal approach significantly enhances diagnostic accuracy compared to single-modality models. Its interpretability aligns with clinical understanding, supporting its potential for real-world application.

摘要

准确快速地检测新型冠状病毒肺炎(COVID-19)对于临床管理仍然至关重要,尤其是在资源有限的环境中。当前的诊断方法在速度和可靠性方面面临挑战,因此需要基于人工智能的互补模型来整合各种数据源。本研究旨在开发和评估一种多模态机器学习模型,该模型结合临床生物标志物和胸部X线图像,以提高诊断准确性并提供可解释的见解。我们使用了从临床环境中收集的250例患者的数据集(180例COVID-19阳性和70例阴性病例)。除胸部X线图像外,还纳入了如C反应蛋白(CRP)、铁蛋白、中性粒细胞与淋巴细胞比值(NLR)和白蛋白等生物标志物。随机森林和梯度提升模型用于生物标志物分析,残差神经网络(ResNet)和视觉几何组卷积神经网络(VGG CNN)架构应用于影像数据。一种后期融合策略整合了这些模态的预测结果。分层k折交叉验证确保了稳健的评估,同时防止数据泄露。使用曲线下面积(AUC-ROC)、F1分数、特异性、阴性预测值(NPV)和马修斯相关系数(MCC)评估模型性能,并通过自助重采样计算置信区间。梯度提升+VGG融合模型表现最佳,AUC-ROC为0.94,F1分数为0.93,特异性为93%,NPV为96%,MCC为0.91。SHAP和LIME可解释性分析确定CRP、铁蛋白和特定肺区域是预测的关键因素。与单模态模型相比,所提出的多模态方法显著提高了诊断准确性。其可解释性与临床理解一致,支持其在实际应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92e0/11674685/347489313d38/diagnostics-14-02800-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验